9

- /] Joint Program Executive Office
Joint Tactical Radio System

1
an

Deployment Optimizations —Push M odel Registration

02 December 2010
JTRS SCA Working Group

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

|
PROGRAIV

X ECUTIVE RIS
oooooo

Task Overview

 Objective
— To replace “pull model” registration behavior with “push model”
behavior
— To better support least privilege registration interfaces
— To ensure all registration and port connection use cases are
maintained or enhanced
 Benefits

— Better Assurance
» Opportunity for access can be limited to the push only
* No Naming Service, App Components register directly with AppFactory

— Better Performance
» Less total number of calls involved
* Reduces startup and instantiation time

* Attributes can now become optional and when not used, can reduce the
number of operations implemented

e Impact
— Some interfaces refactored (see interface details)
— Some registration behavior changes

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Topics

Overview

Port Accessor

Application Factory

Device Manager

Domain Manager

Registered and Obtainable Provides Ports
nterface Specifics

Domain Profile Specifics

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Overview

e Pull Model

— SCA v2.2.2 and previous versions have relied heavily on a pull model
— For example:

» getPort for pulling uses and provides ports

» Pulling attributes (e.g. devicelD, registeredDevices)

» Pulling Application Components from a Naming Service

[getRegisteredDevices] [—]
DomainManager AppFactory lresolve

) X

NamingService
DeviceManager P 4

N 7
getPort]
\
\
7 ’ getPort I
[—% -/

\ApComponent

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Overview

 Push Model
ﬁegisterDeviceManager \

-Registered Components
(complete with IDs and Provides DomainManager
Ports) can be pushed with the 9 AppFactory
DeviceManager registration
-The DCD information can also
be pushed instead of pulled by f \
accessing a DeviceManager registerComponent
Qtt”b“te \L -Direct registration removes the
S need for a Naming Service
_1 -Provides Ports can be pushed
with the component registration
\and don't need to pulled later J
DeviceManager
. -
registerComponent P ¥
-Device ID and Provides Ports \ AppComponent
can be pushed with the

component registration and don’t Device

need to pulled later

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Overview

External CF Management
— Expand capability for a push model

“push” model currently supported in v2.2.2 through Events, but still
requires some pulls

“push” information on various returns (e.g. installApplication, create)
that would previously only been available via pulls

— Continue to support pull model
e Maintain “pull” type attributes (e.g. Domain Manager

applicationFactories attribute)

— Provides a good balance between performance and capability

Allows for greater performance when utilizing the push model for
external management

Continues to support unique Use Cases where pulls may still be
needed

Allows for backward compatibility
Doesn’t violate the “least privilege” principle

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

JpE—.
" S
JOINT,
PROGRAM
EXECUTIVE
) GRS
<«
/

4

Overview

e External CF Management

/getDomainManagerProfile
- Both Pull and Push model
capabilities are provided for
Y External CF Management ’

getName

- Pulls are maintained for
External CF Management

System Control

'
4
4
create
getApplicationFactories _ - =~ - Currently only supporting
o - a “pull” for external ports
- Application Factory references = ——
and various attributes are =~ o—|==—=—"77

returned to the call / \

CF
DomainManager AppFactory
Note: Push Model utilized for - - /
registration and “internal CF” |~ #
management .
9 DeviceManager
Device AppComponent

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Overview

 Refactored Registration Interfaces

— Refactored the registration interfaces into smaller, more concise interfaces
that standalone

» Ensures only the methods needed for registration are provided to registering
components

— Better Assurance
» Follows “least privilege” principles

— Better Performance
» Opportunity to convert from a Pull to a Push Model

 Refactored PortSupplier Interface

— Refactored PortSupplier to allow for direct sharing of connection information
with a component
* Eliminates the need for separate Uses Port servants
— Better Performance
* No need to obtain (whether push or pull) separate Uses Ports
» Can make several connections with a single call
— Better Functionality
» Adds better support for “obtainable” provides ports

» Adds a “release” on the provides side, which allows for provides ports to have a lifecycle
fully tied to a “connection”

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Registered and Obtainable
Provides Ports

« Two types of provides ports

— The new PortAccessor provides formal support for two types of provides ports,
“Registered” and “Obtainable”

 Registered Provides Ports

— Registered provides ports are provides ports which have a lifecycle tied to the lifecycle
of the component

— Registered provides ports are registered with the component and CF will not attempt to
retrieve them when making connections

» getProvidesPorts is typically not expected to be called for provides ports that are registered
with the component

— Registered provides ports are not explicitly released by CF except through the
component’s releaseObject method

» disconnectPorts is never called for a registered provides port

, connectUsesPorts
+°| -Registered Provides Port is supplied
_ _ e to clients through connectUsesPorts
[Registered Provides Port] ’
N 4
N Core Framework 7
= Component
Component - -;D, = P
, /@/
-
7 s / S o <
registerComponent : T~ disconnectPorts
-Registered Provides Port is -Called on the uses side only for
registered with the component Registered Provides Ports

Distribution A - Approved for public release; distribution is unlimited (29 November 2010) 9

PROGRAM
EXECUTIVE
OEEICE]

Registered and Obtainable
Provides Ports

Obtainable Provides Ports

Obtainable provides ports are ports which have a lifecycle tied lifecycle of the
connection

Obtainable provides ports are not registered with the component and instead CF will
attempt to retrieve the port when making the connection

» getProvidesPorts is called for obtainable provides ports since they are not registered with the
component

Obtainable provides ports are explicitly released by CF when the connection is torn
down

» disconnectPorts is always called for obtainable provides ports
Obtainable provides ports support added functionality not available with v2.2.2

» getProvidesPorts with connectionIDs and disconnectPorts call on the provides side make this

|

possible

getProvidesPorts

-Called since Obtainable Provides ports
registerComponent are not registered with the component
- Obtainable Provides Ports are . / [connectUsesPorts]
not registered with the component o U P s

~ 1 4
S ' Core Framework ’,

O /@K/ﬂ Component
Component /é—:r__.[l//

o \%\ - /

[

Ports

Obtainable Provides ’] \ //
\

dfsconnectPorts i]

-Called on both the uses and provides
side only for Obtainable Provides Ports

Distribution A - Approved for public release; distribution is unlimited (29 November 2010) 10

Registered and Obtainable
Provides Ports

 Provides Ports Lifecycle

Note: Registered provides port lifecycle matches that of the
component. This is restricted because a registered provides
port must be registered with the component and is not retrieved
through getProvidesPort or released through disconnectPorts

Note: Not restricted, but also consider either
registering the port with the component, or
keeping it obtainable and creating it during

getProvidesPort
\ P Z
\ g 7
* 7 < 7 s ‘
Lifecycle Description Registered Obtainable | e
— L
Note: C t —Z— 7
ote: Componen ’4 . L
registration ocours - component creation [@ ~ R
after creation, but S s .
before initialize ’T initialize p o~ Port Creation
: 7
getProvidesPorts / [
7
: /
disconnectPorts / [
7 Port Release
releaseObject) o o
V4 \
4 \
\" \
Note: If registered port creation \ N

encounters an error, the initialize

i Note: If the Port was not released
error exception could be thrown

previously through disconnectPorts,
then releaseObject trumps all

Distribution A - Approved for public release; distribution is unlimited (29 November 2010) 11

C o m p o n e nt Abstract Component Non-CF Service Component
Application Component Device Component
|
H I e ra rc h y CF Service Component ([08) Framework Component

Application * Device Domain
Factory Manager Manager
—O0 —O
Component Factory E Component
* J— Component Factory
ication
A I Platform
Component
{abstract}
AN
Assembly Application | Platform | Non-CF
Component Component Factory Component Factory * ST Service
{abstract} Component Component Base Device Component
{abstract}
1.* VANNERAN
Application * osource
Component u Resource :
P Component Device gl
{abstract} c t
ZF {abstract} enlpeliE
- Loadable
(Application) CF Loadable Device
Resource Service Device
(_ Component * Component Component
7 Component {l
Base
| Executable
- ~ {abstract} Executable _
Assembly . Device
Device
Controller
Component
S Component)

Distribution A - Approved for public release; distribution is unlimited (29 November 2010) 12

A ApplicationFactory

4

Component Registration

Note: Instead of going through the Naming Service, Application (e.g.
WF) Components should register directly with the ApplicationFactory.

A new ComponentRegistry Interface is standalone from the

ApplicationFactory interface in order to maintain least privilege. J
/
<i> <i> ¥

CF::ApplicationFactory CF::ComponentRegistry

< name .
o ®registerComponent()

®identifier
Q softwareProfile ﬁl
@ create() <i>

CF::ComponentShutdown

® unregisterComponent()

-

-
-
-
-

-
Note: The unregisterComponent call is not needed by ApplicationFactory, so only the ComponentRegistry is used here. The \
ComponentShutdown is needed for OE components and will be used by Device and Domain Managers.

The use of unregisterComponent by WFs would be similar to WFs calling NS unbind in SCA v2.2.2 (this was not required in
v2.2.2, but was sometimes implemented). In the SCA Next Primer, it should be made clear that these WFs don't need to
replace that functionality with unregisterComponent (hence the reason unregisterComponent is not part of AppFactory).)

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

.

" S
JOINT,
PROGRAM
EXECUTIVE

P/ s loEFICE]
i L) { «
N g/

ApplicationFactory
Attribute Refactoring

Note: Separate “name” and “identifier” attributes
are not really necessary. So to consolidate, the
“identifier” attribute has been removed.

<>

CF::ApplicationFactory

®name

QA 4iL:
TacTIaireel

9 softwareProfile

®create()

<>
CF::ApplicationFactory

<name
< softwareProfile

@ create()

Proposed SCA Next

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

14

ApplicationFactory
Component Model

CF::ApplicationFactory

<>

®name

9 softwareProfile

®create()

ApplicationFactory

Note: For illustration only. ApplicationFactories
may realize “0 to n” ComponentRegistry
interfaces. “n” is to support implementations
where different registry interfaces are handed
out to different components. “0” is to support

static registration (i.e. static IORS).

! J

v <>
CF::ComponentReqgistry

———————— {>{ ®registerComponent()

Proposed SCA Next

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

15

ApplicationFactory
Component Registration

Note: In SCA v2.2.2, a Naming Service is used Note: In SCA Next, a standalone Component
and shared with Application Components for Registry interface is shared with Application
the purposes of registration. . components to be used for registration.
’ ’
/I ’
’
L 7
Any, GPP Any €PP
CE OE WF CF WF
App Naming App Component AC Comp B
Factory Service AC Comp B Factory Registry P
1. Create() 1. Create() _ e m - (\
> E 2. Create «--—--" : : Note: The creation
i 5 E L ; of the Component
2. Load & Execute(NamingService) | : . : Reglstry (2) and
> : 3. Load & Execute(ComponentRegistry) how it shares
21 > 5 component
> 3.1 R registration with
3. Resolve 4 StorC " the rest of the
> . registerComponent
€« — — 41 AppFactory (4.1,
o | 5.1) is shown here
. _4.bind 5. registerComponent for clarity, but
5. Resolve 51 |« ' shoujd not be
— —~— X spec’ed as part of
€—-—-—-—— 6. bind \ the SCA.
: \
7. Resolve N \ k J
<«----- i A \
Note: In SCA v2.2.2, the AppFactory must Note: SCA Next follows the push model
poll the Naming Service to discover when and has Application Components explicitly
Application Components become available register with the ApplicationFactory.
[SCAv2.2.2] [Proposed SCA Next]

Distribution A - Approved for public release; distribution is unlimited (29 November 2010) 16

p—

s S
JOINT,
PROGRAM
EXECUTIVE

) GRS
L) { «

i

& Port Accessor

Note: SCA Next builds upon the PortSupplier and
Port concepts to create a PortAccessor, which
provides a means of fully, directly accessing uses
and obtainable provides ports to build connection/s.

4
/7
/7
/7
’/
<i> <i> F
CFPortSupplier > CF::PortAccessor
SgetPorth) ® getProvidesPorts()
connectUsesPorts()
disconnectPorts()
<i>
CF::Port
¥ ~rannectRart)
\AVJRIRAAV o ppw) | l.\}
SdiseonneetPertf———

Proposed SCA Next

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

DeviceManager
Component Registration

<i> <i>

Note: To continue with the least privilege
CFE::PortAccessor CFE::PropertySet model, The DeviceManager interface is

- - refactored to extract out the registration
methods into new standalone interface

/ Note: Here we reuse the ComponentRegistry
<j> / interface that was utilized by Application
/ Factory. Both Device and Service registration
CF:.DeviceManager I’ is now reduced to a single registration method.
] .]] / A type is passed in the parameter list to
© deviceConfigurationProfile , indicate Device or Service
< fileSys K . J
e

?identifier ! : -

e
®abel) s> -
®registeredDevices I' CF::ComponentRegistry
rEgEErEEEeee /I ®registerComponent()

: : 4 al
N —— i
@ shutdown() <i>
PO : .
registerserviees) CF::FullComponentRegistry
’ . E . g
@ getComponentimplementationld() —[YunregisterComponent()
Pad
7’

7
Note: When a shutdown needs to be supported, a *

ComponentShutdown interface will be passed into
the execparams along with a ComponentRegistry

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

DeviceManager
Attributes Refactoring

Note: When going with a “push” Model for
internal-CF managment, it's likely that the “pull”

<> <> attributes will not be needed. But to cover Uses
. Cases where they are, the attributes are
CE::PortAccessor CE::PropertySet maintained in an optional interface.
\
\
R ﬁ \
¥
<i> <i>
CF::DeviceManager CF::.DeviceManagerAttributes
®deviceConfigurationProfile — | X deviceConfigurationProfile
fileSys L fileSys
Sdentifier Ridentifier
Statbyet ¥ registeredComponents

\
® shutdown() \
——SgetComponentimplementationld)——— : I .
r Note: Sepe{rate “label” and “identifier” attributes are not
\ really necessary. So to consolidate, the “label” attribute
\ has been removed. Separate “registerdDevices” and
)) ' “registeredServices” attributes now collapsed into
Note: getComponentimplementationld is not “registeredComponents”.

needed (no use case).

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

.

" Sy
JOINT,
PROGRAM
EXECUTIVE

P/ s loEFICE]
i L) { «
N g/

DeviceM

anager

Shutdown and LogService Interfaces

Note: Make the PortAccessor and PropertySet
interfaces standalone so they can be made optional
for implementations that don’t require a LogService.

<>
CFE::PortAccessor

<>
CFE::PortAccessor

<i>

CE::PropertySet

&

2 7

/

<>

<>

CE::PropertySet

CF::DeviceManager

\ 4

<|>

CF::ManagerRelease

®shutdown()

Note: Make the shutdown a standalone
interface so it can be made optional in
implementations where it's not required

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

20

DeviceManager
Optional Inheritance

Note: Optional if access to these is
needed outside of registration
AN : Note: Optional if the DeviceManager
‘\ <> supports shutdown operations
CF::DeviceManagerAttributes 7
®deviceConfigurationProfile <i> X [
0 -
ﬂleSys CF::ManagerRelease
SregisteredComponents
~ ®shutdown()
/\
0.1 0.1
INTERROGABLE RELEASABLE
: <i>
<|>
. CE::PropertySet
CE::Componentidentifier
<identifier X
<i> ﬁ 0.1 \
\
CE::PortAccessor | , 4 . ﬁk 1) CONFIGURABLE \
1 / 1 \
AV | <i> A
CONNECTABLE ™ . Note: PortAccessor and PropertySet
CF::DeviceManager are optional if the DeviceManager
A needs to be connected to LogService
’
/
Note: Optional inheritance provided by
[IDL pre-compiler directives Proposed SCA Next

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

DeviceManager Component Model

<I= mote: DeviceManagers mah
CF..Componentldentifier realize “0 to n” Registry and

[}

Shutdown interfaces. “n” is
to support implementations
/\1 where different registry

interfaces are handed out to
<> <i> different components. “0” is
)) to support static registration
CF::DeviceManagerAttributes CF::ManagerRelease \and cases where shutdownj
is not required.
7
0.143 AN .)
<|> ¢
INTERROGABLE | RELEASABLE CE::PropertySet <i>
CF:..ComponentReqgistry
1 1 1 N 0.1
<i> <i> é (;ONF'GURABLE ®registerComponent()
CF::PortAccessor connectasLe . CF::DeviceManager 0.n J %
0.1 1 /N 0.1 <i>
Lq 1 CF:: FullComponentRegistry
Note: Since all interfaces are optional, it's Q ;
possible in some implementations that the _) {I """ {> unregisterComponent()
DeviceManager may not need to realize any - DewceManager

interface. In this case, registering a nil reference 1 0..n

with DomainManager is acceptable.

[Proposed SCA Next] 2

DTSUTOUTUTT 7Y~ MPPTUveO TOT PUPTC TeTCTST, OISt TOUTUTT 1S OTHITIIC O (£ 9 TVUVCTTITOCT ZUTUy

DeviceManager Component Registration

Note: In SCA v2.2.2, the entire DeviceManager
interface was provided to each OE component
for the purposes of registration.

Note: In SCA Next, only the separate
Component Registry interface is shared with OE
components for the purposes of registration.

’ ’
7 7
’ Any GPP Any C,;PP
Y4
CF OE OE CF / OE OE
Device : . Device Component , :
Manager Device A Service A Manager Registrey Device A Servllce A
E i E ~< \é - i
1. Process ' : : > 1. Process P~ ; /
' \ ' ~ H
DCD . i DCD ; S~ Note: The
| H ' [~N i
. i 2. Create | === T grgztg;}g:}:he
_ i ; -~ " ; : .
2. Load & Execute(Dewcel\/la:nager) | | : i Registry (2) and
i i - ; how it shares
3. Load & Execute(DeviceManager) i 3.Load & E>i<ecute(Comopn(:elntReglstry) 5 component
> : registration with
) 4. registerDevice 3.1 Load & Execute(ComponentRegistry) R the rest of the
N) ! DeviceManager
B 5. registerService 4, reg;sterComponent(type=DEVICE) (4.1,5.1) is
A , 41 [« shown here for
6. Initialize & Configure / clarity, but should
> / 5. registerComponent(type=SERVICE) not be spec’ed as
L ' / < part of the SCA.
6.1 Initialize & Configure R ,l /_51\ k J
,' 6. Initialize & Configure

Note: A type attribute signifies whether the registering
component is a DEVICE or SERVICE. This is needed
since the registration behavior is slightly different (e.g.
Services are added to Domain Finder and Devices are not.

SCAv2.2.2

[
6.1 Initialize & Configure

»
»

v

~

Proposed SCA Next

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

23

DomainManager
DeviceManager / Component Registration

[Note: To continue with the least privilege model, The DomainManager interface is]

refactored to extract out the registration methods into new standalone interfaces

<|> |
. I
CF..PropertySet 1 Note: “Late” registration (i.e. Device/Service registration that
1 comes after DeviceManager registration) is supported by having
Z% 1 the DeviceManagerRegistry extend the ComponentRegistry
' -~
- I ,°
<i> I ‘
. I »
CFE::DomainManager I <i>
<identifier ! .
_ I CF:.ComponentReqgistry
? deviceManagers |
I .
| # registerComponent()
1
1
1
[

< applications
@ applicationFactories
fileMgr %
® domainManagerProfile ‘ <i>
CF:: FullComponentRegistry

o . o~
S ppni jseg
¥ unregisterComponent()

®registerDeviceManager()
®unregisterDeviceManager()
®installApplication()
? uninstallApplication() / <i>
' ' CF::EventChannelRegistry

] ® . .
SregisterWithEventChannet) registerWithEventChannel()
*ynregisterFromEventChannel) QunregisterFromEventChannel()

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

DomainManager
Manager / Component Registration

<|>
CE::PropertySet

4&

<[>
CF::DomainManager

<identifier
? deviceManagers

®applications
@ applicationFactories

fileMgr
®domainManagerProfile

oo : :
< . : :
®installApplication()

® uninstallApplication()

<>
CF:.:ManagerRegistry

L#® registerManager()

T

<i>
CF::FullManagerRegistry

4{>’unregisterManager()

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

25

.

" S
JOINT,
PROGRAM
EXECUTIVE

P/ s loEFICE]
L) { «
N g/

4

DomainManager
Manager / Component Registration

Note: Make the PropertySet interface optional for implementations
that don’t require a LogService.

N - Note: Optional
X <|> inheritance
rovided by IDL
: CE::PropertySet Sre_comp”ﬁ,
<> _\ directive.
4
CF::PropertySet Q 0.1 -
CONFIGURABLE ¥
AN | L
<i> <i>
CF::DomainManager CF::DomainManager
Qidentifier <identifier
®deviceManagers ?deviceManagers
Q applications < applications
@ applicationFactories @ applicationFactories
< fileMgr < fileMgr
© domainManagerProfile ® domainManagerProfile
®installApplication() ®installApplication()
@ uninstallApplication() ® uninstallApplication()

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

.

s ~
JOINT,
PROGRAM
EXECUTIVE

) GRS
L) { «

i

L DomainManager
T Manager / Component Registration

<[>
CF::DomainManager

Note: Name changed to align

’ with the ManagerRegistry

Qidentifier

ananaorc

<>
CF::DomainManager

@ applications

@ applicationFactories
fileMgr

< domainManagerProfile

®installApplication()
? uninstallApplication()

<identifier
managers
< applications
@ applicationFactories
< fileMgr
® domainManagerProfile

®installApplication()
® uninstallApplication()

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

27

.

" S
JOINT,
PROGRAM
EXECUTIVE

P/ s loEFICE]
L) { «
N g/

4

DomainManager

Manager / Component Registration

Note: Changed to allow for
reuse of the
Componentldentifier base class

<[>
CF::DomainManager

O el R o
VITUCTTUITET
®managers

@ applications
@ applicationFactories

fileMgr
< domainManagerProfile

®installApplication()
? uninstallApplication()

<i>

CF::Componentldentifier

Qidentifier

i

<>
CF::DomainManager

®managers
®applications

@ applicationFactories
QfileMgr

©® domainManagerProfile

®installApplication()
? uninstallApplication()

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

28

DomainManager

Manager / Component Registration

Note: Break these out
separately to make them
optional for implementations that

<[>
CF::DomainManager

don’t require install behavior

®managers

@ applications

< applicationFactories

< fileMgr

< domainManagerProfile

/ <>
! CF::Domainlnstallation

QinstallApplication()

@ +ollA L 4 N
StanApPPncatrory)
R

LG
armrTS

Q®uninstallApplication()

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

29

DomainManager
Manager / Component Registration

<>
CF::Domaininstallation

Note: Optional
®installApplication() inheritance

. . . rovided by IDL
®uninstallApplication() Ere-compil)ér

N)"l) \ directive.
7
'

INSTALLABLE ol
1

<p>
CF:.:DomainManager
®managers
Q applications
Q applicationFactories
< fileMgr
® domainManagerProfile

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

DomainManager

Manager / Component Registration

<|>

<|>
CF..EventChannelRegistry

®registerWithEventChannel()

®unregisterFromEventChannel()

<|>
CF::Domainlnstallation CF::Componentldentifier
Qidentifier
®installApplication()
®uninstallApplication() /\ o1
0.1)
<>
LA
CF::PropertySet VO\ INSTALLABLE EVENT_USER
CONFIGURABLE 1 1
} <i>
CF::DomainManager
®managers

®applications

< applicationFactories

QfileMgr

® domainManagerProfile

Proposed SCA Next

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

31

DomainManager
Component Model

<|>
. e <i>
CF::Componentldentifier _ o
CF:..EventChannelRegistry
AN s
: ®registerWithEventChannel()
CF::PropertySet Q®unregisterFromEventChannel()
/N 0.1 0. 1/V 0.n 2\
CONFIGURABLE !
| 1 EVENT_USER !
<i> 1y
CF::DomainManager 1 $]
®managers
® applications DomainManager
® applicationFactories <} ______
SfileMgr 1 1 . 1
©domainManagerProfile
| 1 ﬁ\lote: DomainManagers may l\
realize “0 to n” Registry and -
INSTALLABLE Shutdown interfaces. “n”isto A~
v 0..1 support implementations
<i> where different registry
I interfaces are handed out to
CF::Domainlinstallation different DeviceManagers
and EventChanel Users. “0”
o . . is to support static
installApplication() registration and cases where
® uninstallApplication() shutdown is not required.
Proposed S Next

Note: EventChannelRegistry could be optionally
inherited, for backwards compatibility and

external management, or separately realized
which may better follow the least-privilege model.
<|>
0--% CF::ComponentReqgistry
| SregisterComponent()
0..n <[>
D CF::FullComponentRegistry
QunregisterComponent()
O..i> <[>
CE::ManagerRegistry
®registerManager()
0..n <>
CF::FullManagerReqistry
®unregisterManager ()

Note: Will add a profile attribute to outgoing
Domain Manager registration events.

J .

DomainManager

DeviceManager / Component Registration

Note: In SCA v2.2.2, the entire DomainManager
interface was provided to each DeviceManager
for the purposes of registration

7

Note: In SCA Next, only the separate
ManagerRegistry and ComponentRegistry

., interfaces are shared with DeviceManagers for
, ’ II the purposes of registration

/" AnyGPP I,’A':ny,éPP
CF CF OE CF & 4 CF OE
o | | v & o | e || omicnent| | s || i 2
1. Create
1. Give Access(DomainManager) 2. Give Access(Managerl'\%egistry) - -

—

2. registerDeviceManager

3. registerDevice

<
<

<«

4. registerDevice

LY
\
\
\

LY 7
Note: Late Service and
Device Registration is
shown here as an
example.

)

3. Create

— [

4. Give Access(ComponentRegistry)

/‘ \
5. registerManager
51 < g g
/\ .
6. registerComponent
6.1 registerComponent <
6.2 I S—
/__\ N N
, N . I\
, 4 Note: Late Service and
, Device Registration is

SCAv2.22

Distribution

("~ Note: With multiple DeviceManagers)
per DomainManager, there is a bit
more complexity to associate the late
component registration with a specific

DeviceManager
- Approved Tor publiC release,

Propos

supported by the
Device Manager
Registry Interface

o

Note: The creation
and sharing of the
Manager and
Component
Registry (1-4) and
how they share
component
registration with
the rest of the
DomainManager
(5.1, 6.2) is shown
here for clarity, but
should not be
spec’ed as part of
the SCA

J

CUA INCAL

—

istribution is unlimited (29 November 2010)

33

Application

Interface Refactoring

<>
CF::Resource

Note:

Attributes are put into a base interface
that can be optionally inherited.

<>
CF::Application

<i>

CF::ApplicationDeploymentData

®-compenentProcessids ¥ componentProcesslds
QO penmnanantDaovicac .

\lUIIII.lUI ICTIIJTVIULC O ComponentDevlCes
Seomponentimplementations » componentimplementations
2 componentNamingContexts » registeredComponents
@ profile %
®name AN

A

Note:

With the Naming Service removed from
the registration sequence,
componentNamingContexts is replaced
with registeredComponents.

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

34

Application Interface Refactoring

Note:

Application.idl has #defines that turn all options
on, except INTERROGABLE. This makes the
CF::Application essentially a full-weight
CF::Resource.

<i>
CF::ApplicationDeploymentData

Q®componentProcesslds
Q®componentDevices

\ <>
CF::Resource

®componentimplementations
SregisteredComponents

0.1

INTERROGABLE

/ K
\
\
\
\
1 1 S
<>

Note:
CF: 'App”C&tiOﬂ Optional inheritance

®name
Qprofile

provided by IDL pre-
compiler directive.

Proposed SCA Next

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

35

Application Component Model

<>

CF::Resource

CF::ApplicationDeploymentData

<>

/
£ Y
Note: /

When connections are made
to the “supports” interface of
an assemblyinstantiation, a
reference to CF::Application is
returned. However the client
(the uses side of the
connection) is required to
narrow to only the

\CF::Resource interface.)

/)

.
N

o..1fl

INTERROGABLE

L/

~ <i>
CF::Application
JANE]
K
Application 2] 1 0..n
Component ~ |------------ >

<|>
CF::ComponentRegistry

®registerComponent()

Proposed SCA Next

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

36

jpm————y

=0 Registered Provides Port
Connection

Note: In this example, the Provides
Port is registered with the Device

Any GPP Any GPP /
CF WF OE CF WF /I OE
App Uses . Provides App / . Provides
Factory AC Port Device Port Factory AC / Device Port
i : / :
| H V4 H
: : 1. Create !
Note: SCAv2.2.2) | ﬁiﬂe‘ : ¥ | 1 create
requires several 2. registerDevice() 2. registerComponent(Provides Port)
calls to establish a S el -
given port :
connegtion y. 3. Create !
\ T A 3. connectUsesPorts(ConnectionID, Uses Name, Provides Port)
—_—
\ 4. getPort(Name)
» |
|
5. return(Uses Port) K\
*----- \

N Note: Through direct provides port
I registration and the PortAccessor, SCA
7. return(Provides Port) Next greatly reduces the amount of calls
q====== '|' """ '| """" necessary to establish a port connection

8. connectPort(ConnectionlD, Provides Port)

6. getPort(Name)

A 4

9. disconnectPort(ConnectionID) 4. disconnectPorts(ConnectionID)
> —_—
SCAv2.2.2 } [Proposed SCA Next

Distribution A - Approved for public release; distribution is unlimited (29 November 2010) 37

Obtainable Provides Port
Connection

Note: In this example, the
Provides Port is not registered with
the Device and must therefore be

_"Obtainable”
Any GPP Any GPP
CF WF OE CF WF) OE
App Uses . Provides App / ; Provides
Factory AC Port Device Port Factory AC Il Device Port
1. régisterDevice() 1. registerComponent()
P 4-- : -- '
2. Create . _ ™ 2. getProvidesPorts(ConnectionID, Provides Name)
T A Note: getPort is only called _ > :
to obtain a provides port 3. Create !
3. getPort(Name) : ;
> that' Y not bqen EretIe) 4. return(Provides Port) A
4. return(Uses Port) during registration I
4_ _____
5. getPort(Name) 5. connectUsesPorts(ConnectionID, Uses Name, Provides Port)
I » 6. Create ! R
7. return(Provides Port)
. I R
8. connectPort(ConnectionlD, Provides Port)
9. disconnectPort(ConnectionID) 6. disconnectPorts(ConnectionlD, Uses Name)
> —>| |
7. disconnectPorts(ConnectionlD, Provides Name)
Note: No provides port equivalent to i N >
“disconnectPort” to signal when a Note: When the provides port is obtained _ ¥ | 8 Teardown
“Obtainable” port can be cleaned up through getPort, releasePort is called to +” /_\i

indicate the connection is terminated
SCAv2.2.2 } { Proposed SCA Next }

Distribution A - Approved for public release; distribution is unlimited (29 November 2010) 38

Obtainable Provides Port
Connection

Note: In this example, the Provides Port is created with the component,
but not registered with the Device, therefore is treated as “Obtainable”.
This would be a common “Backward Compatibility” Use Case.

Note: In this example, the Provides Port is “Obtainable” but
uses a reference count to determine when it's created ad
destroyed. This would be a “Dynamic Fan-in” Use Case.

Any GPP Any GPP
CF WF) OE CF WF WF] OE
App / , Provides App , Provides
Factory AC / Device Port Factory AC Comp A 'l Device Port
m——T — =
: . Create | . :
2. registerComponent() : 1. reglsterl(:oTponent() ;
| .
2. getProvidesPorts(ConnID1, Provides Name)
3. getProvidesPort(ConnectionlD, Provides Name) | | » 3 Create !
— > 4. return(Provides Port) '
4. return(Provides Port) €~ ———— = e e e e mmm—

5. connectUsesPorts(ConnectionID, Uses Name, Provides Port)
Em——

— |

6. getProvidesPorts(ConnID2, Provides Name)

5. connectUsesPorts(ConnID1, Uses Name, Provides Port)

[[
7. return(Provides Port)

»

8. connectUsesPorts(ConnlD2, Uses Name, Provides Port)

6. disconnectPorts(ConnectionID)
—>|
7. disconnectPorts(ConnectionID)

provides port is not cleaned up until all

Note: A reference count is kept and the
connections have been released.

.

e

9. disconnectPorts(ConnID1)
—>| I

10. disconnectPorts(ConniD1)

h 4

o1 disconnectPorts(ConnlID2)

I g

12. disconnectPorts(ConniD2)

13. Teardown

/\J

Proposed SCA Next

39

Connection

Obtainable Provides Port

Any GPP
CF WF WEF OE
App . Provides || Provides
Factory AC AC Device Port 1 Port 2

I . :
N\ e I T i
m\lote: In this example, separate '\ | -~ _ -1 4 registérComponent() 5 5
WF instances (e.g. on different _» . - =~ ' | <-- 5 ;
channels) request the same =] 5 :

provides port, but the Device
actually creates different
instances of the port in order to
separate out the calls from the

2. getProvidesPorts(ConnlID1, Provides Name) ! :
| | 3. Create |

>

_—

Qwo clients.

4. return(Provides Port 1) /\“ «-" _

Note: In this example, separate
“Obtainable” Provides Ports are
created to service each connection.

—|

/
J 5. connectUsesPorts(ConnID1, Uses Name, Provides Port 1) /
— | | | K
6. getProvidesPorts(ConnlD2, Provides Name) /
! _ ! > 7. Create ~
8. return(Provides Port 2) /\r
----- 4--=---- ------=o
9. connectUsesPorts(ConnlD2, Uses Name, Provides Port 2)
10. disconnectPorts(ConniD1)
>| I
11. disconnectPorts(ConniD1) 12. Teardown _ L Note: Tthe ports aria cleetjned up as the
: > | - ¢+ connections are released.
13. dlsconnectPorts(ConnID2) — /
. > /
14. disconnectPorts(ConniD2) 14. Teardown /
» /\ ‘

Proposed SCA Next

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

40

Interface Specifics

ztruct PortType |
string portName;
Object port;

_ - Note: Green textis to indentify areas where, evenwhen
ivnedef pomnenes € Pertlves 5 Baphes 4 - usingthev222 COMPAT flag, there are a few other minor
FYPECSL Sequence < FOILYpE - ! changesthat go against 100% backwards compatibility

enum ComponentEnumType |
APPLICATION COMPONENT,
DEVICE COMPONENT,

CF_SERVICE COMPONENT,
NON_CF_SERVICE COMPONENT,
FRAMEWORK_COMPONENT

}i -

struct ComponentType |
string identifier;
string softwareProfile;
ComponentEnumType type;

Object componentObiect;
Ports providesPorts;
1
b7
typedel seqlence < ComponentType > Componentsy

struct ManagerType |
ComponentType managerComponent;
Components registeredCompcnents;
FileSystem filesys;
string profile;

typedet sequence < ManagerType > ManagerSed;

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

i

LsteringComponent)7

St

i
i

interface FullComponentRegistry : ComponentRegistry

void unregisterComponent | in string identifier);

St

interface ManagerRegistry |

4

void registerManager | in ManagerType registeringManager | ;

interface FullManagerRegistry: ManagerRegistry
void unregisterManager (in string identifier };

interface EventChannelRegistry {
vold registerWithEventChannel{ in Object registeringDbject,
in string registeringld,
in string eventChannelName);
vold unregisterFromEventChannel (in string unregisteringld,
in string eventChannelName);

fa—

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

42

Interface Specifics

struct ConnectionType |

string connectionld;

string portHame;

Ohject port;

sequence < ConnectionType > Connections;

struct DisconnectionType |

string connectionld;

4]

typedef

intexrfa
void
vold
void

ring portHame;

zequence < DisconnectionType > Disconnections;

2

getProvidesPorts|
connectlsesPorts|{ in Conn
disconnectPorts{ in Disconne

ections portConnections):

= PortAccessor |
! el
{ tions porf ormections j;
0

inout Con
=

3

tions portDisconnections)

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

43

JpE—.
" S
JOINT,
PROGRAM
EXECUTIVE
) GRS
<«
/

i

Interface Specifics

interface PropertySet {
void configure(in CF:.:Properties configProperties);
void query(inout CF::Properties configProperties);

};

i nterface Controll abl eConponent {
readonly attribute bool ean started;
void start();
voi d stop();

};

i nterface Conponentldentifier {
readonly attribute string identifier;

};

i nterface Manager Rel ease {
voi d shutdown();

};

i nterface Devi ceManagerAttributes {
readonly attribute string deviceConfigurationProfile;
readonly attribute CF:.:FileSystemfil eSys;
readonly attribute Conponents regi steredConponents;

};

i nterface Devi ceManager

: Component ldentifier
#i f defined(CONNECTABLE) ||

defi ned(V222_COVPAT)

#if defined(CONFI GURABLE) || defined(V222 COVPAT)
#i f defined(RELEASABLE) || defined(V222_COWPAT)
#if defined(| NTERROGABLE) || defined(V222 COVPAT)
{}:

Note: Device/Service registration interfaces broken out and
modified to follow the least privilege principle and implement the
push model. These interfaces would be optionally provided by these
components via “optional realization” instead of inheritance

, Port Accessor #endi f
, PropertySet #endi f
, Manager Rel ease #endi f

, Devi ceManager Attri but es #endi f

Distribution A - Approved for public release; distribution is unlimited (29 November 2010) 44

Interface Specifics

struct ApplicationFactoryType
ring name;

ring prefile;
ApplicationFactory appFactory;

st
st

£

1
i
typedef sequence < ApplicationFactoryType > ApplicationFactorySeqg;

struct ApplicationType |
string name;
string profile;
Application app’

typedef seguence < ApplicationType > ApplicationSegqg;
i nterface Domai nlnstallation {
void install Application(in string profileFileNane);

voi d uninstall Application(in string applicationld);

b

interface DomainManager : Componentldentifier

#if defined{ INSTALLABLE |} || defined{ V222 COMPAT)} ,Domaininstallation fondif
#if defined{ CONFIGURABLE } || defined{ V222 COMPAT) , PropertySet fondif
#if defined{ EVENT USER Vo] defined{ V222 COMPAT)} ,EventChammelRegistry f#endif

{
readonly attribute ManagerSedq managers;
readonly attribute ArplicationSeq applications;
readonly attribute Arplicationfactorvieq applicationFactories;
Ve readonly attribute CF::FileManager fileMgr:
, readonly attribute string domainManagerProfile;
/ 1%

Note: DeviceManger/Device/Service registration interfaces broken out and modified to follow the least
privilege principle and implement the push model. These interfaces would be optionally provided by these
components via “optional realization” instead of inheritance

Distribution A - Approved for public release; distribution is unlimited (29 November 2010) 45

JOINT,
PROGRAM
EXECUTI/E
o CRAES
@&

Interface Specifics

Note: No componentNamingContexts. Since
the Naming Service is removed in favor of direct
componentregistration, there's no need forthese
attributes. The are replaced by
registeredComponents

\ #defi ne CONNECTABLE
\ #defi ne CONFI GURABLE
\ #defi ne TESTABLE
\ #defi ne CONTROLLABLE
\ #i ncl ude “Resource.idl”

\ interface ApplicationDeploymentData {
\ readonly attribute CF::Application::ComponentProcessldSequence;
\ readonly attribute CF::DeviceAssignmentSequence componentbDevices:

N readonly attribute CF::Application::ComponentElemnentSecuence componentImplementations;
readonly attribute Components registeredComponents;

b

interface Application : Resource
#if defined(| NTERROGABLE) || defined(V222_COWAT) , Appli cati onDepl oynent Dat a #endi f
{

readonly attribute string name;

readonly attribute string profile;

b

interface ApplicationFactory
{
x readonly attribute string nane,;
P readonly attribute string softwareProfil e;
7 CF:: Application create(in string nane,
in CF:.:Properties initConfiguration,

Not_e: Holdentines in CF::DeviceAssi gnment Sequence devi ceAssignments);
attribute. Redundant }:

with “name”.

t g
.

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

p—

o S
JOINT,
PROGRAM
EXECUTIVE

) GRS
o) @&
N g/

i

Interface Specifics

struct Port Type {

string port Nane;
(bj ect port;

b
A structure that defines a port

portName string The name of the port

Attributes _ :
port Object The object reference of the port

t ypedef sequence <Port Type> Ports;

A name/value sequence of PortType structures.

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

.

" Sy
JOINT,
PROGRAM
EXECUTIVE

P/ s loEFICE]
L) { «
N g/

A

Interface Specifics

enum Conponent Enunlype {
APPLI CATI ON_COVPONENT,
DEVI CE_COVPONENT,
CF_SERVI CE_COVPONENT,
NON_CF_SERVI CE_COVPONENT,
FRAVEWORK _COVPONENT

}s

Values

An enum that defines the basic type of a component

APPLICATION_COMPONENT

A component which is launched as part of a Software
Assembly

DEVICE_COMPONENT

A Device launched by a Device Manager

CF_SERVICE_COMPONENT

A Service launched by a Device Manager that the
Framework can manage through the CF based interfaces

NON_CF_SERVICE_COMPONENT

A Service launched by a Device Manager that could
implement possibly any interface (e.g. Log, FileSystem,
etc.)

FRAMEWORK_COMPONENT

A Device Manager, Domain Manager, Application, or
Application Factory

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

48

.

" Sy
JOINT,
PROGRAM
EXECUTIVE

P/ s loEFICE]
L) { «
N g/

A

Interface Specifics

struct Conponent Type {
string identifier;
string softwareProfile;
Conponent Enumlype type;
bj ect conponent (bj ect;
Ports providesPorts;

b

A structure that defines the basic elements of a component

id string The id of the component as specified through execparams

softwareProfile string Either the component’s SPD filename or the SPD itself
Attributes type ComponentEnumType || The type of component

componentObject || Object The object reference of the component

providesPorts Ports A sequence of registered ports provided by the Component

t ypedef sequence <Conponent Type> Conponents;

A sequence of ComponentType structures.

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

49

.

" S
JOINT,
PROGRAM
EXECUTIVE

P/ s loEFICE]
i L) { «
N g/

Interface Specifics

: - Note: For each operation, an attempt \
void r egl ster Corrponent (was made to maintain the exceptions

i n Conponent Type regi steringConponent) - from its predecessor (e.g. in this case,
registerDevice). But these are not

finalized. In the next pass, where
changes to the specification are
proposed, these will be updated. J

Description This operation registers the Component and its provides ports.

The id, type, object reference, and provides ports
of the component being registered

Return None

Parameters registeringComponent|| ComponentType

<|>
Exceptions CF::ComponentRegistry

®registerComponent() E

Originator Application Component, Device, Service, Device Manager

N\

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

p—

" S
JOINT,
PROGRAM
EXECUTIVE

) GRS
o) @&
N g/

Interface Specifics

voi d unregi st er Conponent (
in string identifier)

Description This operation unregisters the component.

Parameters identifier string Id of the registered component as specified through execparams

Return None

Exceptions

<i>
CF::FullComponentRegistry

’ .
Originator Application Component, Device, Service, Device Manager <: unreglsterComponent(i)

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

e

" %
JOINT,
PROGRAM
EXECUTIVE

P/ s loEFICE]
o) @&

4

Interface Specifics

struct Manager Type {
Conponent Type nmanager Conponent ;
Conponent s regi st eredConponent s;
Fil eSystemfil eSys;
sting profile;

}s

A structure that defines the elements of a DeviceManager

Component information including id, type, object
managerComponent ComponentType || reference, and registered provides ports of the Device
Manager itself

A sequence of components that have registered with

Attributes registeredComponents Components this Device Manager
fileSys FileSystem The file system used by this Device Manager
. . Either the DCD filename or the DCD itself which was
profile string

utilized by the DeviceManager

t ypedef sequence <Manager Type> Manager Seq;

A sequence of ManagerType structures.

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

p—

" S
JOINT,
PROGRAM
EXECUTIVE

) GRS
L) { «
N g/

i

Interface Specifics

voi d regi st er Manager (
i n Manager Type regi steringManager)

Parameters

Exceptions

This operation registers a Device Manager

registeringManager

ManagerType

The id, type, object reference, registered provides
ports, registered components, file system, and
device configuration profile of the DeviceManager
being registered

None

<>

CF:.:ManagerRegistry

< ®registerManager() i
\

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

53

p—

o S
JOINT,
PROGRAM
EXECUTIVE

) GRS
o) @&
N g/

i

Interface Specifics

voi d unr egi st er Manager (
in string identifier)

Description This operation unregisters the DeviceManager.

id

Parameters string Id of the registered DeviceManager

Return None

Exceptions

<|>
CF:.FullManagerRegistry

Originator Device Manager <

®unregisterManager()
*

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

p—

" S
JOINT,
PROGRAM
EXECUTIVE

) GRS
o) @&
N g/

i

Interface Specifics

struct ConnectionType {
string connectionl d;
string port Naneg;
(hj ect port;

}

A structure that defines a information needed to make a connection

connectionid string The id of the connection
Attributes portName string The name of the (uses or provides) port
port Object The object reference of the provides port

t ypedef sequence <ConnectionType> Connecti ons;

Description A sequence of ConnectionType structures.

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

.

" S
JOINT,
PROGRAM
EXECUTIVE

P/ s loEFICE]
i L) { «
N g/

Interface Specifics

voi d get Provi desPort s(

. . . Note: For assurance reasons, it is acceptable to
I nout Connections portConnections)

constrain this call to only return “obtainable” ports
and not return “registered” provides ports. Also a
“zero” length input sequence, which would indicate
“get all ports”, is not supported.

This operation returns the specified provides ports.

Passed in is a sequence of connectionlds and names of the
Parameters portConnections|| Connections || requested provides port. Returned is additionally the object

references of the requested provides ports.

None
<i>
Exceptions CF::PortAccessor
< ®getProvidesPorts()
con orts()
Originator Application Factory, Domain Manager @ disconnectPorts()

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

56

.

" S
JOINT,
PROGRAM
EXECUTIVE

P/ s loEFICE]
L) { «
N g/

4

Interface Specifics

voi d connect UsesPort s(
I n Connections portConnections)

Description

Parameters

Exceptions

Originator

This operation supplies a component with a sequence of connection information

portConnections

Connections

A sequence of connectionlds, uses port names, and provides port
object references

None

<>
CF::PortAccessor

®connectUsesPorts()

Application Factory, Domain Manager

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

57

p—

" S,
JOINT,
PROGRAM
EXECUTIVE

) GRS
L) { «

4

o Interface Specifics

struct Di sconnectionType {
string connectionld;
string port Naneg;

b

A structure that defines the information needed to disconnect a connection

connectionid string The id of the connection

Attributes

portName string The name of the (uses or provides) port

t ypedef sequence <Di sconnecti onType> Di sconnecti ons;

A sequence of ConnectionType structures.

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

.

" S
JOINT,
PROGRAM
EXECUTIVE

P/ s loEFICE]
L) { «
N g/

4

Interface Specifics

voi d di sconnect Port s(-————-
; : ; : ; - Note: A “zero” length input sequence, which means
In Disconnections pOI’t D sconnect i ons) “disconnect all ports”, is supported on this call.
Additionally, if “releaseObject” is called on a
component, any ports not “disconnected” through
this call should be released at that time.

Description This operation releases a sequence of uses or provides ports from a given connection.

A sequence of connectionlds and (uses or provides) port
Parameters portDisconnections Disconnections || names. A “zero” length sequence of disconnections
indicates “release all ports”.

: <i>
CF::PortAccessor
@ getProvidesPorts()
hd rts()
Application Factory, Domain Manager < ®disconnectPorts()
———

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

59

i

p—

o S
JOINT,
PROGRAM
EXECUTIVE

) GRS
o) @&
N g/

Interface Specifics

readonly attri bute Conponents registeredConponents;

Description

Attributes

This attribute returns a sequence of registered Components.

registeredComponents

Components

A sequence of Components that have registered with
this Device Manager.

External Management

<>
CF:.DeviceManagerAttributes

? deviceConfigurationProfile
CfileSys

"
< ®registeredComponents)
T —

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

60

e

& Interface Specifics

struct ApplicationType{
string nane;
string profile;
Appl i cation app;

}s

A structure that defines the elements of an application.

The user-friendly name of this application or the application created

name string by this application factory. Equal to the name passed into the
AppFactory create call.
Attributes . . Either the SAD filename or the SAD itself which represents this
profile string

application or the application created by this application factory

app Object The reference to the CF::Application

t ypedef sequence <ApplicationType> Applicati onSeq;

A sequence of deployed applications

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

61

4

" %
JOINT,
PROGRAM
EXECUTIVE

P/ s loEFICE]
o) @&

e

i Interface Specifics

struct ApplicationFactoryType{
string nane;
string profile;
Appl i cati onFactory appFactory;

}s

A structure that defines the elements of an application factory

The user-friendly name of this application or the application created
name string by this application factory. Equal to the softwareassembly element
name attribute of the SAD.

Attributes . . Either the SAD filename or the SAD itself which represents this
profile string . o : .
application or the application created by this application factory
app Object The reference to the CF::ApplicationFactory

t ypedef sequence <ApplicationFactoryType> Applicati onFactorySeq;

A sequence of installed application factories

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

62

p—

s S
JOINT,
PROGRAM
EXECUTIVE

) GRS
L) { «

i

& Interface Specifics

readonly attri bute Manager Seq nmanagers;

Description

This attribute returns the Device Managers that have registered with this Domain Manager.

Attributes managers ManagerSeq The Device Managers that have registered with

this Domain Manager.

<>

ainManager

®managers

QapplicationFactories
SfileMgr
®domainManagerProfile

External Management

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

p—

" S
JOINT,
PROGRAM
EXECUTIVE

) GRS
o) @&
N g/

i

Interface Specifics

readonly attribute Applicati onSeq applications;

Description This attribute returns the applications that have been deployed in this Domain

Attributes applications ApplicationSeq The applications that have been created using AppFactories

that are installed on this Domain Manager.

<|>
CF::DomainManager

Qapplications

SfileMgr
© domainManagerProfile

External Management

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

64

-

" S
JOINT,
PROGRAM
EXECUTIVE

) GRS
L) { «
N g/

i

Interface Specifics

readonly attribute Applicati onFactorySeq applicationFactories;

Description

Attributes

This attribute returns the Application Factories that are installed on this Domain Manager.

applicationFactories

ApplicationFactorySeq

The Application Factories that are installed on this
Domain Manager.

External Management

<|>
CF::DomainManager

®managers

< SapplicationFactories)

Y TITENVIOT

© domainManagerProfile

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

65

-

W ~
JOINT,
PROGRAM
EXECUTIVE

) GRS
L) { «

i

o Interface Specifics

readonly attri bute Conponents registeredConponents;

Description

This attribute returns a sequence of registered application components.

: : [ith
Attributes registeredComponents Components A sequence of Components that have registered wit

this Application or AppFactory during instantiation.

<[>
CF::ApplicationDeploymentData

©componentProcesslds
©®componentDevices

© jons

. SregisteredComponents
External Management

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Domain Profile Specifics

Remove Naming Service
— Remove namingservice from findby and findcomponent
<IELEMENT findby
(namingserviee—+ domainfinder }>

<!ELEMENT findcomponent
(componentresourcefactoryref +—mamingserviece)>

Make findcomponent optional
— Only needed for ResourceFactory behavior

DeviceManagers making port connections

— Need to have some words that allow (but not “require”) DeviceManagers to perform intra-
DCD connections

« E.g. DomainManager may only have to connect components that weren't already connected via its
DeviceManagers

* Maybe put this in a User Guide

Passing more information on registration to avoid distributed parsing

— E.g. DeviceManagers could pass parsed DCD information to DomainManagers upon
registration to alleviate DomainManagers from parsing DCDs

— Decided to leave this as something for the SCA Extensions where an alternate set of
registration interfaces could be defined

Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

67

	Proposed SCA Next
	Proposed SCA Next
	SCA v2.2.2 Proposed SCA Next
	Proposed SCA Next
	Proposed SCA Next
	Proposed SCA Next
	SCA v2.2.2 Proposed SCA Next
	Proposed SCA Next
	Proposed SCA Next
	SCA v2.2.2 Proposed SCA Next
	SCA v2.2.2 Proposed SCA Next
	SCA v2.2.2 Proposed SCA Next
	Proposed SCA Next
	Proposed SCA Next

