
JPEO JTRS

Joint Program Executive Office
Joint Tactical Radio System

Statement B – Distribution authorized to U.S. Government Agencies only; Further dissemination at the direction of JPEO JTRS or higher authority onlyDistribution A - Approved for public release; distribution is unlimited (29 November 2010)

02 December 2010
JTRS SCA Working Group

Deployment Optimizations –Push Model Registration

2Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

• Objective
– To replace “pull model” registration behavior with “push model”

behavior
– To better support least privilege registration interfaces
– To ensure all registration and port connection use cases are

maintained or enhanced
• Benefits

– Better Assurance
• Opportunity for access can be limited to the push only
• No Naming Service, App Components register directly with AppFactory

– Better Performance
• Less total number of calls involved
• Reduces startup and instantiation time
• Attributes can now become optional and when not used, can reduce the

number of operations implemented
• Impact

– Some interfaces refactored (see interface details)
– Some registration behavior changes

3Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

• Overview
• Port Accessor
• Application Factory
• Device Manager
• Domain Manager
• Registered and Obtainable Provides Ports
• Interface Specifics
• Domain Profile Specifics

4Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

• Pull Model
– SCA v2.2.2 and previous versions have relied heavily on a pull model
– For example:

• getPort for pulling uses and provides ports
• Pulling attributes (e.g. deviceID, registeredDevices)
• Pulling Application Components from a Naming Service

DomainManager

DeviceManager

Device

AppFactory

NamingService

AppComponent

getRegisteredDevicesgetRegisteredDevices

getDeviceIDgetDeviceID

getPortgetPort

getPortgetPort

resolveresolve

5Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

• Push Model

DomainManager

DeviceManager

Device

AppFactory

AppComponent

registerComponent
-Direct registration removes the
need for a Naming Service
-Provides Ports can be pushed
with the component registration
and don’t need to pulled later

registerComponent
-Direct registration removes the
need for a Naming Service
-Provides Ports can be pushed
with the component registration
and don’t need to pulled later

registerComponent
-Device ID and Provides Ports
can be pushed with the
component registration and don’t
need to pulled later

registerComponent
-Device ID and Provides Ports
can be pushed with the
component registration and don’t
need to pulled later

registerDeviceManager
-Registered Components
(complete with IDs and Provides
Ports) can be pushed with the
DeviceManager registration
-The DCD information can also
be pushed instead of pulled by
accessing a DeviceManager
attribute

registerDeviceManager
-Registered Components
(complete with IDs and Provides
Ports) can be pushed with the
DeviceManager registration
-The DCD information can also
be pushed instead of pulled by
accessing a DeviceManager
attribute

6Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

• External CF Management
– Expand capability for a push model

• “push” model currently supported in v2.2.2 through Events, but still
requires some pulls

• “push” information on various returns (e.g. installApplication, create)
that would previously only been available via pulls

– Continue to support pull model
• Maintain “pull” type attributes (e.g. Domain Manager

applicationFactories attribute)
– Provides a good balance between performance and capability

• Allows for greater performance when utilizing the push model for
external management

• Continues to support unique Use Cases where pulls may still be
needed

• Allows for backward compatibility
• Doesn’t violate the “least privilege” principle

7Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

getApplicationFactories
- Application Factory references
and various attributes are
returned to the call

getApplicationFactories
- Application Factory references
and various attributes are
returned to the call

• External CF Management

DomainManager

DeviceManager

Device

AppFactory

AppComponent

System Control

CF

Note: Push Model utilized for
registration and “internal CF”
management

Note: Push Model utilized for
registration and “internal CF”
management

getDomainManagerProfile
- Both Pull and Push model
capabilities are provided for
External CF Management

getDomainManagerProfile
- Both Pull and Push model
capabilities are provided for
External CF Management

getName
- Pulls are maintained for
External CF Management

getName
- Pulls are maintained for
External CF Management

create
- Currently only supporting
a “pull” for external ports

create
- Currently only supporting
a “pull” for external ports

8Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

• Refactored Registration Interfaces
– Refactored the registration interfaces into smaller, more concise interfaces

that standalone
• Ensures only the methods needed for registration are provided to registering

components
– Better Assurance

• Follows “least privilege” principles
– Better Performance

• Opportunity to convert from a Pull to a Push Model

• Refactored PortSupplier Interface
– Refactored PortSupplier to allow for direct sharing of connection information

with a component
• Eliminates the need for separate Uses Port servants

– Better Performance
• No need to obtain (whether push or pull) separate Uses Ports
• Can make several connections with a single call

– Better Functionality
• Adds better support for “obtainable” provides ports
• Adds a “release” on the provides side, which allows for provides ports to have a lifecycle

fully tied to a “connection”

9Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

• Two types of provides ports
– The new PortAccessor provides formal support for two types of provides ports,

“Registered” and “Obtainable”

• Registered Provides Ports
– Registered provides ports are provides ports which have a lifecycle tied to the lifecycle

of the component
– Registered provides ports are registered with the component and CF will not attempt to

retrieve them when making connections
• getProvidesPorts is typically not expected to be called for provides ports that are registered

with the component
– Registered provides ports are not explicitly released by CF except through the

component’s releaseObject method
• disconnectPorts is never called for a registered provides port

Core Framework
ComponentComponent

Registered Provides PortRegistered Provides Port

registerComponent
-Registered Provides Port is
registered with the component

registerComponent
-Registered Provides Port is
registered with the component

connectUsesPorts
-Registered Provides Port is supplied
to clients through connectUsesPorts

connectUsesPorts
-Registered Provides Port is supplied
to clients through connectUsesPorts

disconnectPorts
-Called on the uses side only for
Registered Provides Ports

disconnectPorts
-Called on the uses side only for
Registered Provides Ports

10Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

• Obtainable Provides Ports
– Obtainable provides ports are ports which have a lifecycle tied lifecycle of the

connection
– Obtainable provides ports are not registered with the component and instead CF will

attempt to retrieve the port when making the connection
• getProvidesPorts is called for obtainable provides ports since they are not registered with the

component
– Obtainable provides ports are explicitly released by CF when the connection is torn

down
• disconnectPorts is always called for obtainable provides ports

– Obtainable provides ports support added functionality not available with v2.2.2
• getProvidesPorts with connectionIDs and disconnectPorts call on the provides side make this

possible

Core Framework
Component

Component

Obtainable Provides
Ports
Obtainable Provides
Ports

registerComponent
- Obtainable Provides Ports are
not registered with the component

registerComponent
- Obtainable Provides Ports are
not registered with the component

connectUsesP
orts
connectUsesP
orts

getProvidesPorts
-Called since Obtainable Provides ports
are not registered with the component

getProvidesPorts
-Called since Obtainable Provides ports
are not registered with the component

connectUsesPortsconnectUsesPorts

disconnectPorts
-Called on both the uses and provides
side only for Obtainable Provides Ports

disconnectPorts
-Called on both the uses and provides
side only for Obtainable Provides Ports

11Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

• Provides Ports Lifecycle

Lifecycle Description Registered

component creation

initialize

getProvidesPorts

disconnectPorts

releaseObject

Obtainable

Port Creation

Port Release

Note: Registered provides port lifecycle matches that of the
component. This is restricted because a registered provides
port must be registered with the component and is not retrieved
through getProvidesPort or released through disconnectPorts

Note: Registered provides port lifecycle matches that of the
component. This is restricted because a registered provides
port must be registered with the component and is not retrieved
through getProvidesPort or released through disconnectPorts

Note: Component
registration occurs
after creation, but
before initialize

Note: Component
registration occurs
after creation, but
before initialize

Note: If the Port was not released
previously through disconnectPorts,
then releaseObject trumps all

Note: If the Port was not released
previously through disconnectPorts,
then releaseObject trumps all

Note: Not restricted, but also consider either
registering the port with the component, or
keeping it obtainable and creating it during
getProvidesPort

Note: Not restricted, but also consider either
registering the port with the component, or
keeping it obtainable and creating it during
getProvidesPort

Note: If registered port creation
encounters an error, the initialize
error exception could be thrown

Note: If registered port creation
encounters an error, the initialize
error exception could be thrown

12Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Assembly
Controller
Component

Resource

Executable
Device

Loadable
Device

Device

Application
Resource

Component

Application
Component Factory

Component

Application
Component
{abstract}

Assembly
Component
{abstract}

Platform
Component Factory

Component

Resource
Component
{abstract}

CF
Service

Component

Non-CF
Service

Component

Device
Component

Loadable
Device

Component

Executable
Device

Component

Application
Manager

Component

Domain
Manager

Component

Domain
ManagerDevice

Manager
Component

Device
ManagerApplication

Factory
Component

Application
Factory

Application

Component
Base Device

{abstract}

Platform
Component
{abstract}

Component Factory
Component
{abstract}

Component
Factory

*

1..*

Abstract Component

Application Component

CF Service Component

Non-CF Service Component

Device Component

Framework Component

*

* *

*

*

*Component
Base

{abstract}

13Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

<i>
CF::ApplicationFactory

create()

name
identifier
softwareProfile

Note: Instead of going through the Naming Service, Application (e.g.
WF) Components should register directly with the ApplicationFactory.

A new ComponentRegistry Interface is standalone from the
ApplicationFactory interface in order to maintain least privilege.

Note: Instead of going through the Naming Service, Application (e.g.
WF) Components should register directly with the ApplicationFactory.

A new ComponentRegistry Interface is standalone from the
ApplicationFactory interface in order to maintain least privilege.

<i>
CF::ComponentRegistry

registerComponent()

<i>
CF::ComponentShutdown

unregisterComponent()

Note: The unregisterComponent call is not needed by ApplicationFactory, so only the ComponentRegistry is used here. The
ComponentShutdown is needed for OE components and will be used by Device and Domain Managers.

The use of unregisterComponent by WFs would be similar to WFs calling NS unbind in SCA v2.2.2 (this was not required in
v2.2.2, but was sometimes implemented). In the SCA Next Primer, it should be made clear that these WFs don’t need to
replace that functionality with unregisterComponent (hence the reason unregisterComponent is not part of AppFactory).

Note: The unregisterComponent call is not needed by ApplicationFactory, so only the ComponentRegistry is used here. The
ComponentShutdown is needed for OE components and will be used by Device and Domain Managers.

The use of unregisterComponent by WFs would be similar to WFs calling NS unbind in SCA v2.2.2 (this was not required in
v2.2.2, but was sometimes implemented). In the SCA Next Primer, it should be made clear that these WFs don’t need to
replace that functionality with unregisterComponent (hence the reason unregisterComponent is not part of AppFactory).

14Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

<i>
CF::ApplicationFactory

create()

name
identifier
softwareProfile

<i>
CF::ApplicationFactory

create()

name
softwareProfile

Proposed SCA Next

Note: Separate “name” and “identifier” attributes
are not really necessary. So to consolidate, the
“identifier” attribute has been removed.

Note: Separate “name” and “identifier” attributes
are not really necessary. So to consolidate, the
“identifier” attribute has been removed.

15Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Proposed SCA Next

<i>
CF::ApplicationFactory

create()

name
softwareProfile

<i>
CF::ComponentRegistry

registerComponent()ApplicationFactory

1

1

1 0..n

Note: For illustration only. ApplicationFactories
may realize “0 to n” ComponentRegistry
interfaces. “n” is to support implementations
where different registry interfaces are handed
out to different components. “0” is to support
static registration (i.e. static IORs).

Note: For illustration only. ApplicationFactories
may realize “0 to n” ComponentRegistry
interfaces. “n” is to support implementations
where different registry interfaces are handed
out to different components. “0” is to support
static registration (i.e. static IORs).

16Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

1. Create()

3. Load & Execute(ComponentRegistry)

3.1

2. Create

4.1

5.1

1. Create()

2. Load & Execute(NamingService)

2.1

4. bind

6. bind

3. Resolve

5. Resolve

7. Resolve

4. registerComponent

5. registerComponent

Note: In SCA v2.2.2, the AppFactory must
poll the Naming Service to discover when
Application Components become available

Note: In SCA v2.2.2, the AppFactory must
poll the Naming Service to discover when
Application Components become available

SCA v2.2.2 Proposed SCA Next

Note: SCA Next follows the push model
and has Application Components explicitly
register with the ApplicationFactory.

Note: SCA Next follows the push model
and has Application Components explicitly
register with the ApplicationFactory.

Note: The creation
of the Component
Registry (2) and
how it shares
component
registration with
the rest of the
AppFactory (4.1,
5.1) is shown here
for clarity, but
should not be
spec’ed as part of
the SCA.

Note: The creation
of the Component
Registry (2) and
how it shares
component
registration with
the rest of the
AppFactory (4.1,
5.1) is shown here
for clarity, but
should not be
spec’ed as part of
the SCA.

Note: In SCA Next, a standalone Component
Registry interface is shared with Application
components to be used for registration.

Note: In SCA Next, a standalone Component
Registry interface is shared with Application
components to be used for registration.

Note: In SCA v2.2.2, a Naming Service is used
and shared with Application Components for
the purposes of registration.

Note: In SCA v2.2.2, a Naming Service is used
and shared with Application Components for
the purposes of registration.

Any GPP
CF

App
Factory

WF

Comp BACComponent
Registry

Any GPP
CF
App

Factory

WF

Comp BAC

OE
Naming
Service

17Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

<i>
CF::PortSupplier

getPort()

<i>
CF::PortAccessor

getProvidesPorts()
connectUsesPorts()
disconnectPorts()

Proposed SCA Next

Note: SCA Next builds upon the PortSupplier and
Port concepts to create a PortAccessor, which
provides a means of fully, directly accessing uses
and obtainable provides ports to build connections.

Note: SCA Next builds upon the PortSupplier and
Port concepts to create a PortAccessor, which
provides a means of fully, directly accessing uses
and obtainable provides ports to build connections.

<i>
CF::Port

connectPort()
disconnectPort()

18Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

<i>
CF::DeviceManager

registerDevice()
unregisterDevice()

<i>
CF::PortAccessor

<i>
CF::PropertySet

shutdown()
registerService()
unregisterService()
getComponentImplementationId()

deviceConfigurationProfile
fileSys
identifier
label
registeredDevices
registeredServices

<i>
CF::ComponentRegistry

registerComponent()

Note: Here we reuse the ComponentRegistry
interface that was utilized by Application
Factory. Both Device and Service registration
is now reduced to a single registration method.
A type is passed in the parameter list to
indicate Device or Service

Note: Here we reuse the ComponentRegistry
interface that was utilized by Application
Factory. Both Device and Service registration
is now reduced to a single registration method.
A type is passed in the parameter list to
indicate Device or Service

Note: To continue with the least privilege
model, The DeviceManager interface is
refactored to extract out the registration
methods into new standalone interface

Note: To continue with the least privilege
model, The DeviceManager interface is
refactored to extract out the registration
methods into new standalone interface

Note: When a shutdown needs to be supported, a
ComponentShutdown interface will be passed into
the execparams along with a ComponentRegistry

Note: When a shutdown needs to be supported, a
ComponentShutdown interface will be passed into
the execparams along with a ComponentRegistry

<i>
CF::FullComponentRegistry

unregisterComponent()

19Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

<i>
CF::DeviceManager

<i>
CF::PortAccessor

<i>
CF::PropertySet

shutdown()
getComponentImplementationId()

deviceConfigurationProfile
fileSys
identifier
label
registeredDevices
registeredServices

<i>
CF::DeviceManagerAttributes

deviceConfigurationProfile
fileSys
identifier
registeredComponents

Note: When going with a “push” Model for
internal-CF managment, it’s likely that the “pull”
attributes will not be needed. But to cover Uses
Cases where they are, the attributes are
maintained in an optional interface.

Note: When going with a “push” Model for
internal-CF managment, it’s likely that the “pull”
attributes will not be needed. But to cover Uses
Cases where they are, the attributes are
maintained in an optional interface.

Note: getComponentImplementationId is not
needed (no use case).
Note: getComponentImplementationId is not
needed (no use case).

Note: Separate “label” and “identifier” attributes are not
really necessary. So to consolidate, the “label” attribute
has been removed. Separate “registerdDevices” and
“registeredServices” attributes now collapsed into
“registeredComponents”.

Note: Separate “label” and “identifier” attributes are not
really necessary. So to consolidate, the “label” attribute
has been removed. Separate “registerdDevices” and
“registeredServices” attributes now collapsed into
“registeredComponents”.

20Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

<i>
CF::DeviceManager

shutdown()

<i>
CF::ManagerRelease

shutdown()

<i>
CF::PortAccessor

<i>
CF::PropertySet

<i>
CF::PortAccessor

<i>
CF::PropertySet

Note: Make the shutdown a standalone
interface so it can be made optional in
implementations where it’s not required.

Note: Make the shutdown a standalone
interface so it can be made optional in
implementations where it’s not required.

Note: Make the PortAccessor and PropertySet
interfaces standalone so they can be made optional
for implementations that don’t require a LogService.

Note: Make the PortAccessor and PropertySet
interfaces standalone so they can be made optional
for implementations that don’t require a LogService.

21Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Proposed SCA Next

<i>
CF::ManagerRelease

shutdown()

<i>
CF::PortAccessor

<i>
CF::PropertySet

<i>
CF::DeviceManagerAttributes

deviceConfigurationProfile
fileSys
registeredComponents

<i>
CF::DeviceManager

0..1
1

0..1

1

0..1

1

0..1

1

CONFIGURABLE

RELEASABLEINTERROGABLE

Note: Optional inheritance provided by
IDL pre-compiler directives
Note: Optional inheritance provided by
IDL pre-compiler directives

Note: PortAccessor and PropertySet
are optional if the DeviceManager
needs to be connected to LogService

Note: PortAccessor and PropertySet
are optional if the DeviceManager
needs to be connected to LogService

Note: Optional if the DeviceManager
supports shutdown operations
Note: Optional if the DeviceManager
supports shutdown operations

Note: Optional if access to these is
needed outside of registration
Note: Optional if access to these is
needed outside of registration

<i>
CF::ComponentIdentifier
identifier

1
1

CONNECTABLE

22Distribution A - Approved for public release; distribution is unlimited (29 November 2010)
Proposed SCA Next

DeviceManager

<i>
CF::ComponentRegistry

registerComponent()

0..n1

Note: DeviceManagers may
realize “0 to n” Registry and
Shutdown interfaces. “n” is
to support implementations
where different registry
interfaces are handed out to
different components. “0” is
to support static registration
and cases where shutdown
is not required.

Note: DeviceManagers may
realize “0 to n” Registry and
Shutdown interfaces. “n” is
to support implementations
where different registry
interfaces are handed out to
different components. “0” is
to support static registration
and cases where shutdown
is not required.

<i>
CF:: FullComponentRegistry

unregisterComponent()

1

0..n

<i>
CF::DeviceManager

<i>
CF::PortAccessor

<i>
CF::PropertySet

<i>
CF::DeviceManagerAttributes

<i>
CF::ManagerRelease

CONNECTABLE

INTERROGABLE RELEASABLE

1

0..1

1

11

1

0..10..1

0..1

Note: Since all interfaces are optional, it’s
possible in some implementations that the
DeviceManager may not need to realize any
interface. In this case, registering a nil reference
with DomainManager is acceptable.

Note: Since all interfaces are optional, it’s
possible in some implementations that the
DeviceManager may not need to realize any
interface. In this case, registering a nil reference
with DomainManager is acceptable.

CONFIGURABLE
0..1

<i>
CF::ComponentIdentifier

1

1

23Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

DeviceManager Component Registration

Any GPP
CF

Device
Manager

OE

Device AComponent
Registry

2. Create

1. Process
DCD

OE

Service A

Any GPP
CF

Device
Manager

OE

Device A

6.1 Initialize & Configure

1. Process
DCD

2. Load & Execute(DeviceManager)

3. Load & Execute(DeviceManager)

5. registerService

6. Initialize & Configure

OE

Service A

4. registerDevice

4. registerComponent(type=DEVICE)
4.1

5.1

6.1 Initialize & Configure

SCA v2.2.2 Proposed SCA Next

Note: The
creation of the
Component
Registry (2) and
how it shares
component
registration with
the rest of the
DeviceManager
(4.1, 5.1) is
shown here for
clarity, but should
not be spec’ed as
part of the SCA.

Note: The
creation of the
Component
Registry (2) and
how it shares
component
registration with
the rest of the
DeviceManager
(4.1, 5.1) is
shown here for
clarity, but should
not be spec’ed as
part of the SCA.

3.1 Load & Execute(ComponentRegistry)

5. registerComponent(type=SERVICE)

6. Initialize & Configure

3. Load & Execute(ComopnentRegistry)

Note: In SCA Next, only the separate
Component Registry interface is shared with OE
components for the purposes of registration.

Note: In SCA Next, only the separate
Component Registry interface is shared with OE
components for the purposes of registration.

Note: In SCA v2.2.2, the entire DeviceManager
interface was provided to each OE component
for the purposes of registration.

Note: In SCA v2.2.2, the entire DeviceManager
interface was provided to each OE component
for the purposes of registration.

Note: A type attribute signifies whether the registering
component is a DEVICE or SERVICE. This is needed
since the registration behavior is slightly different (e.g.
Services are added to Domain Finder and Devices are not.

Note: A type attribute signifies whether the registering
component is a DEVICE or SERVICE. This is needed
since the registration behavior is slightly different (e.g.
Services are added to Domain Finder and Devices are not.

24Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

DeviceManager / Component Registration

<i>
CF::ComponentRegistry

registerComponent()

<i>
CF:: FullComponentRegistry

unregisterComponent()

<i>
CF::DomainManager

registerDevice()
registerService()

<i>
CF::PropertySet

registerDeviceManager()
unregisterDeviceManager()
installApplication()
uninstallApplication()

identifier
deviceManagers
applications
applicationFactories
fileMgr
domainManagerProfile

unregisterDevice()
unregisterService()
registerWithEventChannel()
unregisterFromEventChannel()

Note: To continue with the least privilege model, The DomainManager interface is
refactored to extract out the registration methods into new standalone interfaces
Note: To continue with the least privilege model, The DomainManager interface is
refactored to extract out the registration methods into new standalone interfaces

Note: “Late” registration (i.e. Device/Service registration that
comes after DeviceManager registration) is supported by having
the DeviceManagerRegistry extend the ComponentRegistry

Note: “Late” registration (i.e. Device/Service registration that
comes after DeviceManager registration) is supported by having
the DeviceManagerRegistry extend the ComponentRegistry

<i>
CF::EventChannelRegistry

registerWithEventChannel()
unregisterFromEventChannel()

25Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

<i>
CF::ManagerRegistry

registerManager()

<i>
CF::DomainManager

registerDeviceManager()

<i>
CF::PropertySet

unregisterDeviceManager()
installApplication()
uninstallApplication()

identifier
deviceManagers
applications
applicationFactories
fileMgr
domainManagerProfile

<i>
CF::FullManagerRegistry

unregisterManager()

Manager / Component Registration

26Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Manager / Component Registration

<i>
CF::DomainManager

<i>
CF::PropertySet

installApplication()
uninstallApplication()

identifier
deviceManagers
applications
applicationFactories
fileMgr
domainManagerProfile

<i>
CF::DomainManager

<i>
CF::PropertySet

installApplication()
uninstallApplication()

identifier
deviceManagers
applications
applicationFactories
fileMgr
domainManagerProfile

Note: Make the PropertySet interface optional for implementations
that don’t require a LogService.
Note: Make the PropertySet interface optional for implementations
that don’t require a LogService.

1

0..1

CONFIGURABLE

Note: Optional
inheritance
provided by IDL
pre-compiler
directive.

Note: Optional
inheritance
provided by IDL
pre-compiler
directive.

27Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Manager / Component Registration

<i>
CF::DomainManager

installApplication()
uninstallApplication()

identifier
deviceManagers
applications
applicationFactories
fileMgr
domainManagerProfile

<i>
CF::DomainManager

installApplication()
uninstallApplication()

identifier
managers
applications
applicationFactories
fileMgr
domainManagerProfile

Note: Name changed to align
with the ManagerRegistry
Note: Name changed to align
with the ManagerRegistry

28Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Manager / Component Registration

<i>
CF::DomainManager

installApplication()
uninstallApplication()

identifier
managers
applications
applicationFactories
fileMgr
domainManagerProfile

<i>
CF::ComponentIdentifier
identifier

<i>
CF::DomainManager

installApplication()
uninstallApplication()

managers
applications
applicationFactories
fileMgr
domainManagerProfile

Note: Changed to allow for
reuse of the
ComponentIdentifier base class

Note: Changed to allow for
reuse of the
ComponentIdentifier base class

29Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Manager / Component Registration

<i>
CF::DomainManager

installApplication()
uninstallApplication()

managers
applications
applicationFactories
fileMgr
domainManagerProfile

Note: Break these out
separately to make them
optional for implementations that
don’t require install behavior

Note: Break these out
separately to make them
optional for implementations that
don’t require install behavior

<i>
CF::DomainInstallation

installApplication()
uninstallApplication()

30Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Manager / Component Registration

<i>
CF::DomainManager

managers
applications
applicationFactories
fileMgr
domainManagerProfile

1

0..1

INSTALLABLE

<i>
CF::DomainInstallation

installApplication()
uninstallApplication()

Note: Optional
inheritance
provided by IDL
pre-compiler
directive.

Note: Optional
inheritance
provided by IDL
pre-compiler
directive.

31Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Manager / Component Registration

<i>
CF::PropertySet

<i>
CF::DomainManager

managers
applications
applicationFactories
fileMgr
domainManagerProfile

1

0..1

Proposed SCA Next

<i>
CF::EventChannelRegistry

registerWithEventChannel()
unregisterFromEventChannel()

EVENT_USER

1

0..1

CONFIGURABLE 1

0..1

INSTALLABLE

<i>
CF::DomainInstallation

installApplication()
uninstallApplication()

<i>
CF::ComponentIdentifier
identifier

32Distribution A - Approved for public release; distribution is unlimited (29 November 2010)
Proposed SCA Next

DomainManager

<i>
CF::DomainManager

managers
applications
applicationFactories
fileMgr
domainManagerProfile

<i>
CF::EventChannelRegistry

registerWithEventChannel()
unregisterFromEventChannel()

0..n1

0..n1

1

0..n

11

Note: DomainManagers may
realize “0 to n” Registry and
Shutdown interfaces. “n” is to
support implementations
where different registry
interfaces are handed out to
different DeviceManagers
and EventChanel Users. “0”
is to support static
registration and cases where
shutdown is not required.

Note: DomainManagers may
realize “0 to n” Registry and
Shutdown interfaces. “n” is to
support implementations
where different registry
interfaces are handed out to
different DeviceManagers
and EventChanel Users. “0”
is to support static
registration and cases where
shutdown is not required.

<i>
CF::ManagerRegistry

registerManager()

<i>
CF::FullManagerRegistry

unregisterManager()

1

0..n

1

0..n
<i>

CF::PropertySet

1

0..1
CONFIGURABLE

<i>
CF::ComponentRegistry

registerComponent()

<i>
CF::FullComponentRegistry

unregisterComponent()

Note: Will add a profile attribute to outgoing
Domain Manager registration events.
Note: Will add a profile attribute to outgoing
Domain Manager registration events.

EVENT_USER

0..1

1

Note: EventChannelRegistry could be optionally
inherited, for backwards compatibility and
external management, or separately realized
which may better follow the least-privilege model.

Note: EventChannelRegistry could be optionally
inherited, for backwards compatibility and
external management, or separately realized
which may better follow the least-privilege model.

<i>
CF::DomainInstallation

installApplication()
uninstallApplication()

1

0..1

INSTALLABLE

<i>
CF::ComponentIdentifier

33Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

DeviceManager / Component Registration

Any GPP
CF

Domain
Manager

CF
Device

Manager
Manager
Registry

1. Create

OE

Device A

Any GPP
CF

Domain
Manager

CF
Device

Manager

OE

Device A

4. registerDevice

6. registerComponent

6.2

1. Give Access(DomainManager)

5.1

3. registerDevice

SCA v2.2.2 Proposed SCA Next

Note: The creation
and sharing of the
Manager and
Component
Registry (1-4) and
how they share
component
registration with
the rest of the
DomainManager
(5.1, 6.2) is shown
here for clarity, but
should not be
spec’ed as part of
the SCA

Note: The creation
and sharing of the
Manager and
Component
Registry (1-4) and
how they share
component
registration with
the rest of the
DomainManager
(5.1, 6.2) is shown
here for clarity, but
should not be
spec’ed as part of
the SCA

Note: In SCA Next, only the separate
ManagerRegistry and ComponentRegistry
interfaces are shared with DeviceManagers for
the purposes of registration

Note: In SCA Next, only the separate
ManagerRegistry and ComponentRegistry
interfaces are shared with DeviceManagers for
the purposes of registration

Note: In SCA v2.2.2, the entire DomainManager
interface was provided to each DeviceManager
for the purposes of registration

Note: In SCA v2.2.2, the entire DomainManager
interface was provided to each DeviceManager
for the purposes of registration

Note: Late Service and
Device Registration is
supported by the
Device Manager
Registry Interface

Note: Late Service and
Device Registration is
supported by the
Device Manager
Registry Interface

Note: Late Service and
Device Registration is
shown here as an
example.

Note: Late Service and
Device Registration is
shown here as an
example.

Note: With multiple DeviceManagers
per DomainManager, there is a bit
more complexity to associate the late
component registration with a specific
DeviceManager

Note: With multiple DeviceManagers
per DomainManager, there is a bit
more complexity to associate the late
component registration with a specific
DeviceManager

2. registerDeviceManager

Component
Registry

3. Create

2. Give Access(ManagerRegistry)

4. Give Access(ComponentRegistry)

6.1 registerComponent

5. registerManager

34Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

<i>
CF::Application

name

componentProcessIds
componentDevices

<i>
CF::Resource

componentImplementations
componentNamingContexts
profile

<i>
CF::ApplicationDeploymentData
componentProcessIds
componentDevices
componentImplementations
registeredComponents

Note:
Attributes are put into a base interface
that can be optionally inherited.

Note:
Attributes are put into a base interface
that can be optionally inherited.

Note:
With the Naming Service removed from
the registration sequence,
componentNamingContexts is replaced
with registeredComponents.

Note:
With the Naming Service removed from
the registration sequence,
componentNamingContexts is replaced
with registeredComponents.

35Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Note:
Optional inheritance
provided by IDL pre-
compiler directive.

Note:
Optional inheritance
provided by IDL pre-
compiler directive.

<i>
CF::Resource

INTERROGABLE

0..1

1

Proposed SCA Next

1

1
<i>

CF::Application
name
profile

0..1

<i>
CF::ApplicationDeploymentData
componentProcessIds
componentDevices

registeredComponents
componentImplementations

Note:
Application.idl has #defines that turn all options
on, except INTERROGABLE. This makes the
CF::Application essentially a full-weight
CF::Resource.

Note:
Application.idl has #defines that turn all options
on, except INTERROGABLE. This makes the
CF::Application essentially a full-weight
CF::Resource.

36Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Proposed SCA Next

Application
Component

<i>
CF::Resource

0..1

<i>
CF::ApplicationDeploymentData

1

1

<i>
CF::ComponentRegistry

registerComponent()

1 0..n

1

INTERROGABLE

<i>
CF::Application

Note:
When connections are made
to the “supports” interface of
an assemblyinstantiation, a
reference to CF::Application is
returned. However the client
(the uses side of the
connection) is required to
narrow to only the
CF::Resource interface.

Note:
When connections are made
to the “supports” interface of
an assemblyinstantiation, a
reference to CF::Application is
returned. However the client
(the uses side of the
connection) is required to
narrow to only the
CF::Resource interface.

37Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Any GPP
CF WF OE
App

Factory
Uses
PortAC Device Provides

Port

Any GPP
CF WF OE
App

Factory AC Device Provides
Port

SCA v2.2.2 Proposed SCA Next

4. getPort(Name)

6. getPort(Name)

8. connectPort(ConnectionID, Provides Port)

9. disconnectPort(ConnectionID)

5. return(Uses Port)

3. Create

7. return(Provides Port)

1. Create

4. disconnectPorts(ConnectionID)

1. Create
Note: SCA v2.2.2
requires several
calls to establish a
given port
connection

Note: SCA v2.2.2
requires several
calls to establish a
given port
connection

Note: Through direct provides port
registration and the PortAccessor, SCA
Next greatly reduces the amount of calls
necessary to establish a port connection

Note: Through direct provides port
registration and the PortAccessor, SCA
Next greatly reduces the amount of calls
necessary to establish a port connection

3. connectUsesPorts(ConnectionID, Uses Name, Provides Port)

2. registerDevice() 2. registerComponent(Provides Port)

Note: In this example, the Provides
Port is registered with the Device
Note: In this example, the Provides
Port is registered with the Device

38Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Any GPP
CF WF OE
App

Factory AC Device Provides
Port

Any GPP
CF WF OE
App

Factory
Uses
PortAC Device Provides

Port

SCA v2.2.2 Proposed SCA Next

6. disconnectPorts(ConnectionID, Uses Name)

3. Create

2. getProvidesPorts(ConnectionID, Provides Name)

4. return(Provides Port)

5. connectUsesPorts(ConnectionID, Uses Name, Provides Port)

7. disconnectPorts(ConnectionID, Provides Name)

8. Teardown

1. registerComponent()

3. getPort(Name)

5. getPort(Name)

8. connectPort(ConnectionID, Provides Port)

9. disconnectPort(ConnectionID)

4. return(Uses Port)

2. Create

7. return(Provides Port)

6. Create

1. registerDevice()

Note: No provides port equivalent to
“disconnectPort” to signal when a
“Obtainable” port can be cleaned up

Note: No provides port equivalent to
“disconnectPort” to signal when a
“Obtainable” port can be cleaned up

Note: When the provides port is obtained
through getPort, releasePort is called to
indicate the connection is terminated

Note: When the provides port is obtained
through getPort, releasePort is called to
indicate the connection is terminated

Note: getPort is only called
to obtain a provides port
that had not been provided
during registration

Note: getPort is only called
to obtain a provides port
that had not been provided
during registration

Note: In this example, the
Provides Port is not registered with
the Device and must therefore be
“Obtainable”

Note: In this example, the
Provides Port is not registered with
the Device and must therefore be
“Obtainable”

39Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

WF

Any GPP
CF WF OE
App

Factory AC Device Provides
Port

Any GPP
CF WF OE
App

Factory AC Device Provides
PortComp A

6. disconnectPorts(ConnectionID)

1. Create

3. getProvidesPort(ConnectionID, Provides Name)

4. return(Provides Port)

5. connectUsesPorts(ConnectionID, Uses Name, Provides Port)

7. disconnectPorts(ConnectionID)

2. registerComponent()

9. disconnectPorts(ConnID1)

3. Create
2. getProvidesPorts(ConnID1, Provides Name)

4. return(Provides Port)

5. connectUsesPorts(ConnID1, Uses Name, Provides Port)

10. disconnectPorts(ConnID1)

13. Teardown

1. registerComponent()

6. getProvidesPorts(ConnID2, Provides Name)

7. return(Provides Port)

8. connectUsesPorts(ConnID2, Uses Name, Provides Port)

11. disconnectPorts(ConnID2)

12. disconnectPorts(ConnID2)

Note: In this example, the Provides Port is created with the component,
but not registered with the Device, therefore is treated as “Obtainable”.
This would be a common “Backward Compatibility” Use Case.

Note: In this example, the Provides Port is created with the component,
but not registered with the Device, therefore is treated as “Obtainable”.
This would be a common “Backward Compatibility” Use Case.

Note: In this example, the Provides Port is “Obtainable” but
uses a reference count to determine when it’s created ad
destroyed. This would be a “Dynamic Fan-in” Use Case.

Note: In this example, the Provides Port is “Obtainable” but
uses a reference count to determine when it’s created ad
destroyed. This would be a “Dynamic Fan-in” Use Case.

Note: A reference count is kept and the
provides port is not cleaned up until all
connections have been released.

Note: A reference count is kept and the
provides port is not cleaned up until all
connections have been released.

Proposed SCA Next

40Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

OEWF
Any GPP

CF WF
App

Factory AC Device Provides
Port 1AC Provides

Port 2

Proposed SCA Next

10. disconnectPorts(ConnID1)

3. Create
2. getProvidesPorts(ConnID1, Provides Name)

4. return(Provides Port 1)

5. connectUsesPorts(ConnID1, Uses Name, Provides Port 1)

11. disconnectPorts(ConnID1)

14. Teardown

1. registerComponent()

6. getProvidesPorts(ConnID2, Provides Name)

8. return(Provides Port 2)

9. connectUsesPorts(ConnID2, Uses Name, Provides Port 2)

13. disconnectPorts(ConnID2)

14. disconnectPorts(ConnID2)

7. Create

12. Teardown

Note: In this example, separate
“Obtainable” Provides Ports are
created to service each connection.

Note: In this example, separate
“Obtainable” Provides Ports are
created to service each connection.

Note: The ports are cleaned up as the
connections are released.
Note: The ports are cleaned up as the
connections are released.

Note: In this example, separate
WF instances (e.g. on different
channels) request the same
provides port, but the Device
actually creates different
instances of the port in order to
separate out the calls from the
two clients.

Note: In this example, separate
WF instances (e.g. on different
channels) request the same
provides port, but the Device
actually creates different
instances of the port in order to
separate out the calls from the
two clients.

41Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

42Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

43Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

44Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

interface PropertySet {
void configure(in CF::Properties configProperties);
void query(inout CF::Properties configProperties);

};

interface ControllableComponent {
readonly attribute boolean started;
void start();
void stop();

};

interface ComponentIdentifier {
readonly attribute string identifier;

};

interface ManagerRelease {
void shutdown();

};

interface DeviceManagerAttributes {
readonly attribute string deviceConfigurationProfile;
readonly attribute CF::FileSystem fileSys;
readonly attribute Components registeredComponents;

};

interface DeviceManager : ComponentIdentifier
#if defined(CONNECTABLE) || defined(V222_COMPAT) ,PortAccessor #endif
#if defined(CONFIGURABLE) || defined(V222_COMPAT) ,PropertySet #endif
#if defined(RELEASABLE) || defined(V222_COMPAT) ,ManagerRelease #endif
#if defined(INTERROGABLE) || defined(V222_COMPAT) ,DeviceManagerAttributes #endif
{};

Note: Device/Service registration interfaces broken out and
modified to follow the least privilege principle and implement the
push model. These interfaces would be optionally provided by these
components via “optional realization” instead of inheritance

Note: Device/Service registration interfaces broken out and
modified to follow the least privilege principle and implement the
push model. These interfaces would be optionally provided by these
components via “optional realization” instead of inheritance

45Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

interface DomainInstallation {
void installApplication(in string profileFileName);
void uninstallApplication(in string applicationId);

};

Note: DeviceManger/Device/Service registration interfaces broken out and modified to follow the least
privilege principle and implement the push model. These interfaces would be optionally provided by these
components via “optional realization” instead of inheritance

Note: DeviceManger/Device/Service registration interfaces broken out and modified to follow the least
privilege principle and implement the push model. These interfaces would be optionally provided by these
components via “optional realization” instead of inheritance

46Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

interface ApplicationFactory
{

readonly attribute string name;
readonly attribute string softwareProfile;
CF::Application create(in string name,

in CF::Properties initConfiguration,
in CF::DeviceAssignmentSequence deviceAssignments);

};

interface Application : Resource
#if defined(INTERROGABLE) || defined(V222_COMPAT) ,ApplicationDeploymentData #endif
{

readonly attribute string name;
readonly attribute string profile;

};

#define CONNECTABLE
#define CONFIGURABLE
#define TESTABLE
#define CONTROLLABLE
#include “Resource.idl”

47Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

struct PortType {
string portName;
Object port;

};

DescriptionType

Attributes

Name

A structure that defines a portDescription

The name of the portstringportName

The object reference of the portObjectport

typedef sequence <PortType> Ports;

A name/value sequence of PortType structures.Description

48Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

Description

Values

Name

An enum that defines the basic type of a componentDescription

A Device Manager, Domain Manager, Application, or
Application FactoryFRAMEWORK_COMPONENT

enum ComponentEnumType {
APPLICATION_COMPONENT,
DEVICE_COMPONENT,
CF_SERVICE_COMPONENT,
NON_CF_SERVICE_COMPONENT,
FRAMEWORK_COMPONENT

};

A component which is launched as part of a Software
AssemblyAPPLICATION_COMPONENT

A Device launched by a Device ManagerDEVICE_COMPONENT

A Service launched by a Device Manager that could
implement possibly any interface (e.g. Log, FileSystem,
etc.)

NON_CF_SERVICE_COMPONENT

A Service launched by a Device Manager that the
Framework can manage through the CF based interfacesCF_SERVICE_COMPONENT

49Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

struct ComponentType {
string identifier;
string softwareProfile;
ComponentEnumType type;
Object componentObject;
Ports providesPorts;

};

DescriptionType

Attributes

Name

A structure that defines the basic elements of a componentDescription

The id of the component as specified through execparamsstringid

The type of componentComponentEnumTypetype

typedef sequence <ComponentType> Components;
A sequence of ComponentType structures.Description

The object reference of the componentObjectcomponentObject

A sequence of registered ports provided by the ComponentPortsprovidesPorts

Either the component’s SPD filename or the SPD itselfstringsoftwareProfile

50Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

void registerComponent(
in ComponentType registeringComponent)
raises(InvalidObjectReference, RegisterError);

DescriptionType

Parameters

None

Name

Application Component, Device, Service, Device Manager

Return

Originator

DescriptionType

Raised when input parameter
registeringComponent contains an
invalid object reference

InvalidObjectReference
Exceptions

This operation registers the Component and its provides ports.Description

Raised due to internal error or if
the specified type is not acceptedRegisterError

The id, type, object reference, and provides ports
of the component being registeredComponentTyperegisteringComponent

<i>
CF::ComponentRegistry

registerComponent()

Note: For each operation, an attempt
was made to maintain the exceptions
from its predecessor (e.g. in this case,
registerDevice). But these are not
finalized. In the next pass, where
changes to the specification are
proposed, these will be updated.

Note: For each operation, an attempt
was made to maintain the exceptions
from its predecessor (e.g. in this case,
registerDevice). But these are not
finalized. In the next pass, where
changes to the specification are
proposed, these will be updated.

51Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

void unregisterComponent(
in string identifier)
raises(UnregisterError);

DescriptionType

Parameters

None

Name

Application Component, Device, Service, Device Manager

Return

Originator

DescriptionType

Exceptions

This operation unregisters the component.Description

Raised due to internal errorUnregisterError

Id of the registered component as specified through execparamsstringidentifier

<i>
CF::FullComponentRegistry

unregisterComponent()

52Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

struct ManagerType {
ComponentType managerComponent;
Components registeredComponents;
FileSystem fileSys;
sting profile;

};

A structure that defines the elements of a DeviceManagerDescription

typedef sequence <ManagerType> ManagerSeq;
A sequence of ManagerType structures.Description

DescriptionType

Attributes

Name

Component information including id, type, object
reference, and registered provides ports of the Device
Manager itself

ComponentTypemanagerComponent

A sequence of components that have registered with
this Device ManagerComponentsregisteredComponents

The file system used by this Device ManagerFileSystemfileSys

Either the DCD filename or the DCD itself which was
utilized by the DeviceManagerstringprofile

53Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

void registerManager(
in ManagerType registeringManager)
raises(InvalidObjectReference, InvalidProfile, RegisterError);

DescriptionType

Parameters

Name

This operation registers a Device ManagerDescription

The id, type, object reference, registered provides
ports, registered components, file system, and
device configuration profile of the DeviceManager
being registered

ManagerTyperegisteringManager

<i>
CF::ManagerRegistry

registerManager()

NoneReturn

DescriptionType

Raised when input parameter
registeringDeviceManager contains
an invalid reference

InvalidObjectReference

Exceptions Raised when the device manager’s
DCD file and the DCD’s referenced
files do not exist.

InvalidProfile

Raised due to internal errorRegisterError

54Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

void unregisterManager(
in string identifier)
raises(UnregisterError);

DescriptionType

Parameters

None

Name

Device Manager

Return

Originator

DescriptionType

Exceptions

This operation unregisters the DeviceManager.Description

Raised due to internal errorUnregisterError

Id of the registered DeviceManagerstringid

<i>
CF::FullManagerRegistry

unregisterManager()

55Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

struct ConnectionType {
string connectionId;
string portName;
Object port;

};

DescriptionType

Attributes

Name

A structure that defines a information needed to make a connectionDescription

The id of the connectionstringconnectionId

The name of the (uses or provides) portstringportName

typedef sequence <ConnectionType> Connections;

A sequence of ConnectionType structures.Description

The object reference of the provides portObjectport

56Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

void getProvidesPorts(
inout Connections portConnections)
raises(UnknownPort, OccupiedPort);

DescriptionType

Parameters

Name

Application Factory, Domain Manager

Return

Originator

DescriptionType

None

Exceptions

This operation returns the specified provides ports.Description

Raised if any of the names are
unrecognizedUnknownPort

Passed in is a sequence of connectionIds and names of the
requested provides port. Returned is additionally the object
references of the requested provides ports.

ConnectionsportConnections

<i>
CF::PortAccessor

getProvidesPorts()
connectUsesPorts()
disconnectPorts()

Note: For assurance reasons, it is acceptable to
constrain this call to only return “obtainable” ports
and not return “registered” provides ports. Also a
“zero” length input sequence, which would indicate
“get all ports”, is not supported.

Note: For assurance reasons, it is acceptable to
constrain this call to only return “obtainable” ports
and not return “registered” provides ports. Also a
“zero” length input sequence, which would indicate
“get all ports”, is not supported.

Raised if the port specified by name can
not accept the connectionOccupiedPort

57Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

void connectUsesPorts(
in Connections portConnections)
raises(InvalidPort, OccupiedPorts);

DescriptionType

Parameters

Name

Application Factory, Domain Manager

Return

Originator

DescriptionType

None

Exceptions

This operation supplies a component with a sequence of connection informationDescription

Raised if the supplied provides port is
invalid.InvalidPort

A sequence of connectionIds, uses port names, and provides port
object referencesConnectionsportConnections

<i>
CF::PortAccessor

getProvidesPorts()
connectUsesPorts()
disconnectPorts()

Raised if the port specified by name
can not accept the connectionOccupiedPort

58Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

struct DisconnectionType {
string connectionId;
string portName;

};

DescriptionType

Attributes

Name

A structure that defines the information needed to disconnect a connectionDescription

The id of the connectionstringconnectionId

The name of the (uses or provides) portstringportName

typedef sequence <DisconnectionType> Disconnections;

A sequence of ConnectionType structures.Description

59Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

void disconnectPorts(
in Disconnections portDisconnections)
raises(InvalidPort);

DescriptionType

Parameters

Name

Application Factory, Domain Manager

Return

Originator

DescriptionType

None

Exceptions

This operation releases a sequence of uses or provides ports from a given connection.Description

Raised if the connectionId specified is
unknown.InvalidPort

A sequence of connectionIds and (uses or provides) port
names. A “zero” length sequence of disconnections
indicates “release all ports”.

DisconnectionsportDisconnections

<i>
CF::PortAccessor

getProvidesPorts()
connectUsesPorts()
disconnectPorts()

Note: A “zero” length input sequence, which means
“disconnect all ports”, is supported on this call.
Additionally, if “releaseObject” is called on a
component, any ports not “disconnected” through
this call should be released at that time.

Note: A “zero” length input sequence, which means
“disconnect all ports”, is supported on this call.
Additionally, if “releaseObject” is called on a
component, any ports not “disconnected” through
this call should be released at that time.

60Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

readonly attribute Components registeredComponents;

DescriptionType

Attributes

Name

External ManagementOriginator

This attribute returns a sequence of registered Components.Description

A sequence of Components that have registered with
this Device Manager.ComponentsregisteredComponents

<i>
CF::DeviceManagerAttributes

deviceConfigurationProfile
fileSys
registeredComponents

61Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

struct ApplicationType{
string name;
string profile;
Application app;

};

A structure that defines the elements of an application.Description

typedef sequence <ApplicationType> ApplicationSeq;
A sequence of deployed applicationsDescription

DescriptionType

Attributes

Name

The user-friendly name of this application or the application created
by this application factory. Equal to the name passed into the
AppFactory create call.

stringname

Either the SAD filename or the SAD itself which represents this
application or the application created by this application factorystringprofile

The reference to the CF::ApplicationObjectapp

62Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

struct ApplicationFactoryType{
string name;
string profile;
ApplicationFactory appFactory;

};

A structure that defines the elements of an application factoryDescription

DescriptionType

Attributes

Name

The user-friendly name of this application or the application created
by this application factory. Equal to the softwareassembly element
name attribute of the SAD.

stringname

Either the SAD filename or the SAD itself which represents this
application or the application created by this application factorystringprofile

The reference to the CF::ApplicationFactoryObjectapp

typedef sequence <ApplicationFactoryType> ApplicationFactorySeq;
A sequence of installed application factoriesDescription

63Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

readonly attribute ManagerSeq managers;

DescriptionType

Attributes

Name

External ManagementOriginator

This attribute returns the Device Managers that have registered with this Domain Manager.Description

The Device Managers that have registered with
this Domain Manager.ManagerSeqmanagers

<i>
CF::DomainManager

managers
applications
applicationFactories
fileMgr
domainManagerProfile

64Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

readonly attribute ApplicationSeq applications;

DescriptionType

Attributes

Name

External ManagementOriginator

This attribute returns the applications that have been deployed in this DomainDescription

The applications that have been created using AppFactories
that are installed on this Domain Manager.ApplicationSeqapplications

<i>
CF::DomainManager

managers
applications
applicationFactories
fileMgr
domainManagerProfile

65Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

readonly attribute ApplicationFactorySeq applicationFactories;

DescriptionType

Attributes

Name

External ManagementOriginator

This attribute returns the Application Factories that are installed on this Domain Manager.Description

The Application Factories that are installed on this
Domain Manager.ApplicationFactorySeqapplicationFactories

<i>
CF::DomainManager

managers
applications
applicationFactories
fileMgr
domainManagerProfile

66Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

0..1

<i>
CF::ApplicationDeploymentData
componentProcessIds
componentDevices

registeredComponents
componentImplementations

readonly attribute Components registeredComponents;

DescriptionType

Attributes

Name

External ManagementOriginator

This attribute returns a sequence of registered application components.Description

A sequence of Components that have registered with
this Application or AppFactory during instantiation.ComponentsregisteredComponents

67Distribution A - Approved for public release; distribution is unlimited (29 November 2010)

• Remove Naming Service
– Remove namingservice from findby and findcomponent

• Make findcomponent optional
– Only needed for ResourceFactory behavior

• DeviceManagers making port connections
– Need to have some words that allow (but not “require”) DeviceManagers to perform intra-

DCD connections
• E.g. DomainManager may only have to connect components that weren’t already connected via its

DeviceManagers
• Maybe put this in a User Guide

• Passing more information on registration to avoid distributed parsing
– E.g. DeviceManagers could pass parsed DCD information to DomainManagers upon

registration to alleviate DomainManagers from parsing DCDs
– Decided to leave this as something for the SCA Extensions where an alternate set of

registration interfaces could be defined

	Proposed SCA Next
	Proposed SCA Next
	SCA v2.2.2 Proposed SCA Next
	Proposed SCA Next
	Proposed SCA Next
	Proposed SCA Next
	SCA v2.2.2 Proposed SCA Next
	Proposed SCA Next
	Proposed SCA Next
	SCA v2.2.2 Proposed SCA Next
	SCA v2.2.2 Proposed SCA Next
	SCA v2.2.2 Proposed SCA Next
	Proposed SCA Next
	Proposed SCA Next

