
SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

i

SOFTWARE COMMUNICATIONS ARCHITECTURE V 2.2.2

PRODUCT MIGRATION GUIDE

26 August 2016

Version: 0.1

Prepared by:

Joint Tactical Networking Center

33000 Nixie Way

San Diego, CA 92147-5110

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

ii
Distribution Statement on the Cover Page applies to all pages of this document.

REVISION SUMMARY

Version Revision

0.1 Initial Release

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

iii
Distribution Statement on the Cover Page applies to all pages of this document.

TABLE OF CONTENTS

1 SCOPE .. 6

1.1 Informative References .. 6

2 OVERVIEW ... 6

3 SCA 4.1 STRUCTURE .. 6

4 MIGRATION OF 2.2.2 PRODUCTS .. 8

4.1 SCA 4.1 Common Construct – BaseComponent .. 8

4.1.1 Interface Changes ... 10

4.1.1.1 Resource ... 10

4.1.1.2 LifeCycle ... 11

4.1.1.3 PropertySet ... 11

4.1.1.4 PortSupplier ... 12

4.1.1.5 TestableObject ... 13

4.1.2 Implementation Changes .. 13

4.1.2.1 Requirements Driven ... 13

4.1.2.2 Structural .. 13

4.2 SCA 4.1 ManageableApplicationComponent... 14

4.2.1 Interface Changes ... 16

4.2.2 Implementation Changes .. 16

4.2.2.1 Requirements Driven ... 16

4.2.2.2 Structural .. 17

4.3 SCA 4.1 Device Component ... 17

4.3.1 Interface Changes ... 19

4.3.1.1 Device .. 19

4.3.2 Implementation Changes .. 19

4.3.2.1 Requirements Driven ... 19

4.3.2.2 Structural .. 20

4.4 SCA 4.1ApplicationManagerComponent ... 20

4.4.1 Interface Changes ... 22

4.4.1.1 Application ... 22

4.4.2 Implementation Changes .. 22

4.4.2.1 Requirements Driven ... 22

4.4.2.2 Structural .. 23

4.5 SCA 4.1 ApplicationFactoryComponent .. 23

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

iv
Distribution Statement on the Cover Page applies to all pages of this document.

4.5.1 Interface Changes ... 24

4.5.1.1 ApplicationFactory .. 24

4.5.2 Implementation Changes .. 25

4.5.2.1 Requirements Driven ... 25

4.5.2.2 Structural .. 26

4.6 SCA 4.1 DeviceManagerComponent ... 27

4.6.1 Interface Changes ... 29

4.6.1.1 DeviceManager Attributes ... 29

4.6.1.2 DeviceManager Operations ... 30

4.6.2 Implementation Changes .. 30

4.6.2.1 Requirements Driven ... 30

4.6.2.2 Structural .. 31

4.7 SCA 4.1 DomainManagerComponent .. 31

4.7.1 Interface Changes ... 33

4.7.1.1 DomainManager Types and Exceptions .. 33

4.7.1.2 DomainManager Attributes ... 34

4.7.1.3 DomainManager Registration Operations ... 34

4.7.2 Implementation Changes .. 35

4.7.2.1 Requirements Driven ... 35

4.7.2.2 Structural .. 35

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

5
Distribution Statement on the Cover Page applies to all pages of this document.

TABLE OF FIGURES

Figure 1: SCA 2.2.2 Resource Interface ... 9

Figure 2: SCA 4.1 Base Component ... 10

Figure 3: Resource Interface Comparison .. 10

Figure 4: Lifecycle Interface Comparison ... 11

Figure 5: PropertySet Interface Comparison .. 11

Figure 6: Port Interfaces Comparison ... 12

Figure 7: Test Interface Comparison .. 13

Figure 8: SCA 2.2.2 Resource and ResourceFactory Interfaces .. 15

Figure 9: SCA 4.1 ManageableApplicationComponent ... 16

Figure 10: SCA 2.2.2 Device Interface ... 18

Figure 11: SCA 4.1 DeviceComponent .. 18

Figure 12: Device Interface Comparison .. 19

Figure 13: SCA 2.2.2 Application Interface ... 21

Figure 14: SCA 4.1 ApplicationManagerComponent .. 21

Figure 15: Application Interface Comparison .. 22

Figure 16: SCA 2.2.2 ApplicationFactory Interface ... 23

Figure 17: SCA 4.1 ApplicationFactoryComponent .. 24

Figure 18: ApplicationFactory Interface Comparison .. 24

Figure 19: ApplicationFactory Interface Operation Comparison ... 25

Figure 20: SCA 2.2.2 DeviceManager Interface .. 27

Figure 21: SCA 4.1 DeviceManagerComponent .. 28

Figure 22: DeviceManager Interface Comparison ... 29

Figure 23: DeviceManager Interface Operation Comparison .. 30

Figure 24: SCA 2.2.2 DomainManager Interface .. 32

Figure 25: SCA 4.1 DomainManagerComponent .. 32

Figure 26: DomainManager Interface Comparison .. 33

Figure 27: DomainManager Interface Attribute Comparison .. 34

Figure 28: DomainManager Interface Registration Operation Comparison 34

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

6
Distribution Statement on the Cover Page applies to all pages of this document.

1 SCOPE

This Product Migration Guide is an engineering focused document intended to provide practical

guidance and suggestions for migrating Software Communications Architecture (SCA) compliant

products from version 2.2.2 to 4.1 compliance. It is not a substitute for the SCA specification, but

a companion document to highlight items that should be taken into consideration when

modernizing an existing implementation.

1.1 INFORMATIVE REFERENCES

The following documents are referenced within this specification or used as reference or guidance

material in its development.

[1] Software Communications Architecture Specification, Version 4.1, 20 August 2015.

[2] Software Communications Architecture Specification Version 2.2.2, 15 May 2006.

2 OVERVIEW

SCA 4.1 was published in August of 2015 [1]. The specification incorporates a host of features that

facilitate the development and deployment of better performing radio products that are more

secure, capable, and cost effective. The current SCA release provides an upgrade of the widely

deployed SCA 2.2.2 which was released in May 2006 [2].

A topic of interest associated with SCA 4.1 relates to the question of what differences exist

between the specification versions and what steps would be required to migrate SCA 2.2.2

compliant versions to the current SCA version. This document highlights the interface and

requirements differences between the specifications and provides general guidance related to the

steps that would be required to transition an SCA 2.2.2 product. Since SCA products can be

developed using several approaches it is likely that the suggestions contained within this document

will not provide a detailed roadmap of all of the steps required to perform the migration of any

particular implementation. However, the guidance should identify the majority of conceptual items

that will be applicable to products that are migration candidates.

3 SCA 4.1 STRUCTURE

SCA 4.1 has a very different appearance than SCA 2.2.2, but at its core the specification includes

the same elements and addresses similar issues. The primary driver behind the cosmetic changes

was the introduction of the Component Model within SCA 4.1. Components represent

"autonomous units within a system or subsystem" which have the following characteristics:

 Provide one or more Interfaces which users may access, and

 Hide the internal representation and make it inaccessible other than as provided by the

Interfaces.

Component definitions reference interface definitions (which may not be component-unique) and

specify required behaviors, constraints or associations that must be adhered to when their

corresponding products are built.

At a functional level, component specifications differ from their incorporated interfaces because

they include the dynamic behavior and semantics that must be provided by the containing entity.

SCA 2.2.2 also contained those functional requirements, but no distinction was made between its

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

7
Distribution Statement on the Cover Page applies to all pages of this document.

“static” and “dynamic” requirements. In some instances, the lack of separation made the

specification more difficult to comprehend. Table 1 below highlights the similarities between the

SCA 2.2.2 and 4.1 interfaces.

Table 1: Comparison between SCA 4.1 and SCA 2.2.2 Interfaces

SCA 4.1 Interface SCA 2.2.2 Interface Similar Across
Versions**

Portion of 2.2.2
Interface***

Identical
Content*

AdministratableInterface N/A X

AggregateDevice AggregateDevice X

AggregateDeviceAttributes N/A X

ApplicationFactory ApplicationFactory X

ApplicationManager Application X

CapacityManagement N/A

ComponentFactory ResourceFactory X

ComponentIdentifier N/A X

ComponentRegistry N/A

ControllableInterface N/A X

DeploymentAttributes N/A X

DeviceAttributes N/A X

DomainInstallation N/A X

DomainManager DomainManager X

EventChannelRegistry N/A X

ExecutableInterface N/A X

File File X

FileManager FileManager X

FileSystem FileSystem X

FullComponentRegistry N/A

LifeCycle LifeCycle X

LoadableInterface N/A X

PortAccessor Port, PortSupplier X

PropertySet PropertySet X

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

8
Distribution Statement on the Cover Page applies to all pages of this document.

*Identical interfaces – self-explanatory, the SCA 2.2.2 implementation can be reused in SCA 4.1.

**Similar interfaces – much of the SCA 2.2.2 implementation can be reused in an SCA 4.1

product, however some elements will need to be developed or removed to account for the SCA 4.1

feature set.

***Portion of SCA 2.2.2 interface – Can be either a similar or identical interface, these interfaces

represent an extraction of SCA 2.2.2 concepts within a new, SCA 4.1 interface definition.

4 MIGRATION OF 2.2.2 PRODUCTS

SCA 2.2.2 systems are comprised of Waveforms, Operating Environment components and a Core

Framework implementation. In SCA 4.1 terminology this equates to a collection of Base

Application Components, Base Device Components, Framework Control Components, Framework

Service Components and the underlying services provided by any middleware implementations or

the Real-time Operating System. The primary components within these categories are

ManageableApplicationComponents, Device Components, ApplicationManagerComponents,

ApplicationFactoryComponents, DeviceManagerComponents and DomainManagerComponents.

When migrating a component from SCA 2.2.2 to SCA 4.1 a development team must account for

interface changes, requirements changes and design changes. The subsequent text will focus on the

interface and requirements changes. There may be some references to design changes, but at best

they will be high level because the SCA requirements can be fulfilled using a wide variety of

implementation approaches.

4.1 SCA 4.1 COMMON CONSTRUCT – BASECOMPONENT

The BaseComponent construct is reused across many of the SCA 4.1 Components. In large part

BaseComponent is equivalent to the composition of the SCA 2.2.2 Resource (including all of its

inherited interfaces). Consequently, many of the same elements and techniques are involved in the

migration process. This section captures the activities required to migrate the “BaseComponent”

portion of an SCA 2.2.2 component.

The SCA 2.2.2 base entity is the Resource interface that is shown in Figure 1.

ReleasableManager N/A

TestableInterface TestableObject X

N/A Device

N/A Resource

N/A DeviceManager

N/A LoadableDevice

N/A ExecutableDevice

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

9
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 1: SCA 2.2.2 Resource Interface

In SCA 4.1 this functionality was componentized and encapsulated within the BaseComponent

construct. The original Resource interface inherited from several smaller interfaces whereas the

new BaseComponent, Figure 2, is an aggregation of optional interfaces. This design pattern is

extended throughout SCA 4.1. In SCA 2.2.2, more complex interfaces such as Device inherit from

Resource. In SCA 4.1, there is no Device interface, but the DeviceComponent inherits the

decomposed interfaces previously encapsulated by Resource.

When porting from SCA 2.2.2 to SCA 4.1, the opportunity exists to delete unnecessary interfaces

to reduce code complexity. As an example, many SCA 2.2.2 implementations merely stubbed out

the TestableObject interface. Depending upon the system design, <<TESTABLE>> may or may

not be supported, and thus represents an opportunity to eliminate the interface.

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

10
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 2: SCA 4.1 Base Component

The following interfaces are part of the Resource interface: Resource, LifeCycle, PropertySet,

PortSupplier and TestableObject. The following sections will provide a comparison of those

interfaces.

4.1.1 Interface Changes

4.1.1.1 Resource

Figure 3: Resource Interface Comparison

1. SCA 4.1 removes the Resource interface.

2. SCA 4.1 introduces the new ControllableInterface and ComponentIdentifier interfaces in

place of Resource.

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

11
Distribution Statement on the Cover Page applies to all pages of this document.

3. SCA 4.1 introduces the new started attribute within the ControllableInterface interface.

4. SCA 4.1 re-scopes the exceptions from the Resource interface to the ControllableInterface

interface.

4.1.1.2 LifeCycle

Figure 4: Lifecycle Interface Comparison

The interfaces are identical.

4.1.1.3 PropertySet

Figure 5: PropertySet Interface Comparison

The interfaces are identical.

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

12
Distribution Statement on the Cover Page applies to all pages of this document.

4.1.1.4 PortSupplier

Figure 6: Port Interfaces Comparison

1. SCA 4.1 collapses the functionality of the Port and PortSupplier interfaces and combines it

within the PortAccessor interface.

2. SCA 4.1 eliminates the OccupiedPort exception and reflects its semantics within the

InvalidPort exception.

3. SCA 4.1 refactors the composition of the InvalidPort exception variable to a

ConnectionErrorType.

4. SCA 4.1 refactors port operations to enable multiple connections to be managed on a single

call (e.g. connectUsesPorts rather than connectPort).

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

13
Distribution Statement on the Cover Page applies to all pages of this document.

4.1.1.5 TestableObject

Figure 7: Test Interface Comparison

1. SCA 4.1 renames the TestableObject interface to TestableInterface.

4.1.2 Implementation Changes

4.1.2.1 Requirements Driven

4.1.2.1.1 Resource

SCA 4.1 introduces three new requirements, SCA32, SCA33 and SCA36 that are associated with

the new started attribute. The implementation requirements associated with this change should be

minimal.

4.1.2.1.2 PortSupplier

The 4.1 specification includes three new requirements SCA11, SCA14 and SCA519 that are a

result of the port restructure, two of which are a byproduct of the fact that the operations need to

accommodate multiple ports. This change will likely result in a moderate change to an existing

implementation.

4.1.2.2 Structural

An SCA 2.2.2 component that uses the Resource interfaces will require the following changes in

order for it to be migrated to SCA 4.1 compliance:

1. Change any scoped or qualified TestableObject references should be to TestableInterface.

2. Change any scoped or qualified Port or PortSupplier references to PortAccessor.

3. Change any use of the InvalidPort exception to represent the exception’s new format.

4. Update any use of the OccupiedPort or UnknownPort exceptions to become InvalidPort

exceptions.

5. Rename the PortSupplier::getPort operation to PortAccessor::getProvidesPorts and update

its implementation to support requests for multiple provides ports.

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

14
Distribution Statement on the Cover Page applies to all pages of this document.

6. Update the PortAccessor connectPort and disconnectPort operations to delegate calls to the

converted (references and servant classes) non-CORBA (e.g. cpp) Port class.

7. Rename the connectPort operation to connectUsesPorts and update it to support requests for

multiple ports.

8. Rename the disconnectPort operation, will need to be renamed to disconnectPorts and

update it to support requests for multiple ports.

9. Re-scope any use of the StopError or StartError exceptions to a definition within the

ControllableInterface interface.

10. Update any use of the stop or start operations to reflect a location within the

ControllableInterface interface.

11. Extend the implementation to include the ControllableInterface started attribute, a Boolean

attribute that is set and unset when stop and start are called.

4.2 SCA 4.1 MANAGEABLEAPPLICATIONCOMPONENT

SCA 2.2.2 applications or waveforms (ApplicationComponents) realize the Resource and

optionally ResourceFactory interfaces that are illustrated in Figure 8. Application components,

within both SCA 2.2.2 and SCA 4.1 support the same core capabilities of:

 Configuration management

 Operations management

 Life cycle support

 Connectivity management

 Test management

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

15
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 8: SCA 2.2.2 Resource and ResourceFactory Interfaces

As illustrated earlier, Resource is a monolithic interface that incorporates several lower level

interfaces. An SCA 2.2.2 waveform is composed of multiple application components that utilize

the capabilities and services provided by the platform’s operating environment.

Within SCA 4.1 componentization the Resource interface was removed and the developer has the

responsibility of defining Component interfaces, which when realized provides equivalent

functionality. In other words, the developer must build the component (as an example, the

application component) with the BaseComponent interfaces. Unlike the paradigm of SCA 2.2.2,

there is no BaseComponent interface (or corresponding *.idl) to inherit.

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

16
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 9: SCA 4.1 ManageableApplicationComponent

An SCA 4.1 developer could define the following interface which effectively mimics the 2.2.2

Resource (there is a difference in the identifier definition which will be accounted for):

interface BaseResource : LifeCycle, TestableInterface,

PropertySet, PortAccessor, ControllableInterface

Utilizing the SCA 4.1 “Resource”, which is equivalent to a 2.2.2 Resource (LifeCycle is picked up

through BaseResource), as the basis for an SCA 4.1 ApplicationComponent definition, as shown in

Figure 9, is an approach that may be employed to minimize the changes required to migrate an

application.

Similar to SCA 2.2.2, an ApplicationComponentFactoryComponent (ResourceFactory), can be

incorporated optionally as part of an application if desired.

4.2.1 Interface Changes

The SCA 4.1 ApplicationComponent does not introduce additional interface changes beyond those

introduced by the BaseComponent.

4.2.2 Implementation Changes

4.2.2.1 Requirements Driven

SCA 2.2.2 applications contain approximately 75 requirements and that count drops to about 70 in

SCA 4.1. In actuality there is a greater disparity as there are structural and modeling oriented

requirements such as SCA550 (a ManageableApplicationComponent shall realize the LifeCycle

interface) that are included within that count. Once those are removed, there are about 58

requirements allocated to each component.

SCA 4.1 introduces one new requirement, SCA82, at the application level beyond those of the

BaseComponent. SCA82 requires an application component to register with a component registry

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

17
Distribution Statement on the Cover Page applies to all pages of this document.

rather than a naming service. The mechanics of this functionality are similar, the component is

provided with a reference that it uses to perform the registration. When the component registers

with the ComponentRegistry it needs to provide a populated ComponentType structure to utilize

the new push model registration. The SCA 4.1 implementation will also need to remove any code

that was associated with the Naming Service. Thus the level of effort and associated with this

change should be moderate.

4.2.2.2 Structural

Another instance where the SCA 4.1 Component Model differs from an SCA 2.2.2 “component” is

that in SCA 4.1 a Waveform developer will need to define their own interface(s) to represent their

waveform components because they are not provided by the framework. As an example, the

developer might choose to extend the BaseResource interface described earlier to create a

Waveform specific interface as follows:

interface MyWaveform1 : BaseResource

An SCA 2.2.2 application component that uses the Resource interfaces will require the following

changes beyond those required of a BaseComponent in order to be migrated to SCA 4.1

compliance:

1. Modify any interfaces associated with an SCA component to inherit from a non-CORBA

CF::Port equivalent in order to minimize changes to an existing implementation.

2. Update any use of the identifier attribute to its new location within

CF::ComponentIdentifier.

3. Review the use of AEP operations to ensure that they are all still in accordance with the

selected profile.

4.3 SCA 4.1 DEVICE COMPONENT

SCA 2.2.2 devices (DeviceComponents) realize the Device interface, see Figure 10, which inherits

the Resource interface. SCA 2.2.2 and 4.1 devices support the same basic capabilities:

 Capacity management

 Configuration management

 Operations management

 Life cycle support

 Connectivity management

 Test management

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

18
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 10: SCA 2.2.2 Device Interface

Within SCA 4.1 componentization the SCA 2.2.2 hierarchy of Device, Loadable Device, and

Executable Device was removed. Instead, SCA 4.1 introduces the DeviceComponent,

LoadableDeviceComponent and ExecutableDeviceComponent. As with BaseComponent, there is

no encompassing interface for DeviceComponent, Figure 11.

Figure 11: SCA 4.1 DeviceComponent

A developer could leverage the SCA 4.1 “Resource” (BaseResource) to create a compliant

interface which is equivalent to a 2.2.2 Device (LifeCycle is picked up through BaseResource):

interface BaseDevice: BaseResouce, DeviceAttributes,

AdministrableInterface, CapacityManagement

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

19
Distribution Statement on the Cover Page applies to all pages of this document.

The AggregateDevice association can be provided at the component level if needed.

4.3.1 Interface Changes

4.3.1.1 Device

Figure 12: Device Interface Comparison

1. SCA 4.1 removes the Device interface and its Device scoped attributes and exceptions.

2. SCA 4.1 relocates the InvalidState exception to the CF:: name scope.

3. SCA 4.1 eliminates the Device interface softwareProfile and label attributes,

softwareProfile moves to the ComponentType structure and label is removed.

4. SCA 4.1 refactors Device interface into three new interfaces AdministrableInterface,

CapacityManagement and DeviceAttributes, and replaces and of the corresponding scoped

names for attributes, exceptions or data types.

4.3.2 Implementation Changes

4.3.2.1 Requirements Driven

SCA 2.2.2 devices contain approximately 98 requirements, that count increases to 99 in SCA 4.1.

However, when the structural and modeling oriented requirements are removed, there are roughly

84 requirements allocated to each device component.

SCA 4.1 introduces one new requirement, SCA298, at the device level beyond those of the

BaseComponent. SCA298 requires a DeviceComponent to register with a component registry

rather than a naming service. The mechanics of this functionality are similar, the component is

provided with a reference that it uses to perform the registration. When the component registers

with the ComponentRegistry it needs to provide a populated ComponentType structure to utilize

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

20
Distribution Statement on the Cover Page applies to all pages of this document.

the new push model registration. The SCA 4.1 implementation will also need to remove any code

that was associated with the Naming Service. Thus the level of effort and associated with this

change should be moderate.

4.3.2.2 Structural

An SCA 4.1 device developer will need to define their own interface(s) to represent their device

components because they are not provided by the framework. As an example, the developer might

choose to extend the BaseDevice interface to create a Platform Operating Environment specific

interface as follows:

interface MyDecoderDevice : BaseDevice

An SCA 2.2.2 component that uses the Device interface will require the following changes beyond

those required of a BaseComponent to be migrated to SCA 4.1 compliance:

1. Modify any interfaces associated with an SCA component could be modified to inherit from

a non-CORBA CF::Port equivalent in order to minimize changes to an existing

implementation.

2. Update any use of the identifier attribute to its new location within

CF::ComponentIdentifier.

3. Revise any use of the InvalidState exception to reflect its new location within the CF

module.

4. Update the use of the adminState, usageState or operationalState attributes to reflect their

location within the new CF interfaces.

5. Re-scope any use of the InvalidCapacity exception to reflect its definition within

Device::CapacityManagement.

6. Relocate the implementation of the allocateCapacity and deallocateCapacity operations to

the Device::CapacityManagement interface.

7. Rename any use of the softwareProfile attribute (to profile) and update its scoping in

accordance with its location within the ComponentType structure.

8. Remove any use of the label attribute.

9. Integrate any implementation of an AggregateDevice at the component level, and

incorporate the necessary changes, e.g. forming associations, to represent its new location.

Similar distinctions exist within the comparison of SCA 4.1 LoadableDeviceComponents and

ExecutableDeviceComponents with their SCA 2.2.2 counterparts and their migration should be

able to be performed with a comparable level of effort.

4.4 SCA 4.1APPLICATIONMANAGERCOMPONENT

SCA 2.2.2 applications (ApplicationManagerComponents) realize the Application interface, shown

in Figure 13, which inherits the SCA 2.2.2 Resource interface. Both SCA 2.2.2 and 4.1 application

managers support the same basic capability:

 Provides the Core Frameworks proxy to access an independently developed SCA application

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

21
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 13: SCA 2.2.2 Application Interface

Application is a monolithic interface which incorporates several lower level interfaces via its

inheritance of the Resource interface.

Following the pattern of application (i.e. waveform) migration from SCA 2.2.2., an SCA 4.1

developer has the responsibility of defining the Component interface, which when realized

provides the specified functionality.

Figure 14: SCA 4.1 ApplicationManagerComponent

An SCA developer could define the following interface which could be utilized to manage

applications:

interface myApplicationManager : CF::ApplicationManager

An ApplicationManagerComponent, which is illustrated in Figure 14, inherits the functions and

capabilities of a BaseComponent and can be managed as such. It is worth noting that the

ApplicationManager interface, in its role as a proxy, is also a monolithic interface as it must be

able to support the delegation of operations to any of the instantiated applications that it manages.

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

22
Distribution Statement on the Cover Page applies to all pages of this document.

4.4.1 Interface Changes

4.4.1.1 Application

Figure 15: Application Interface Comparison

1. SCA 4.1 removes componentNamingContexts interface which was associated with the

Naming Service.

2. SCA 4.1 removes the componentImplementations attribute and relocates the profile,

componentDevices and componentProcessIds attribute information within the

ComponentType structure.

3. SCA 4.1 renames the Application interface to ApplicationManager and modifies its

inheritance to reflect the removal of the Resource interface.

4.4.2 Implementation Changes

4.4.2.1 Requirements Driven

SCA 2.2.2 applications contain approximately 114 requirements, and the count decreases to 83 in

SCA 4.1. However, when the structural and modeling oriented requirements are removed, the count

is diminished even more and there are approximately 68 requirements allocated.

SCA 4.1 introduces eight new ApplicationManager requirements beyond those of the

BaseComponent. Four of the new requirements, SCA55, SCA58, SCA59 and SCA523 are

associated with an ApplicationManagerComponent’s role in establishing and destroying

connections to external components. The impact of these changes should be minimal, as the

behavior should mimic the connection logic required for a BaseComponent. The other four

requirements SCA161, SCA162, SCA163 and SCA543 provide clarification of the

ApplicationManagerComponent’s role in delegating operations to the application components that

it manages. The implementation of the requirements should result in a minimal to moderate level of

effort as they introduce new, although not too complex, logic for features such as multiple

assembly controllers.

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

23
Distribution Statement on the Cover Page applies to all pages of this document.

4.4.2.2 Structural

An SCA 4.1 Core Framework developer that realizes the ApplicationManager interface will need

to define their own interface(s) to represent the ApplicationManagerComponent, for example the

myApplicationManager interface described earlier.

An SCA 2.2.2 component that implements the Application interface will require the following

changes beyond those required of a BaseComponent to be migrated to SCA 4.1 compliance:

1. Update any use of the Application interface to ApplicationManager.

2. Eliminate any use of the Resource name will and have the name go directly to one of the

Base Application interface names.

3. Modify any interfaces associated with an SCA component to inherit from a non-CORBA

CF::Port equivalent in order to minimize changes to an existing implementation.

4. Update any use of the identifier attribute to its new location within

CF::ComponentIdentifier.

5. Remove any reference to the namingContext attribute, or other naming service related

concept (if the implementation is going to implement backwards compatibility then this

logic should be preserved).

6. Any usage of the componentProcessIds, componentDevices or componentImplementations

attributes is integrated within the ApplicationFactoryComponent’s population of the

ApplicationManagerComponent’s ComponentType representation.

4.5 SCA 4.1 APPLICATIONFACTORYCOMPONENT

SCA 2.2.2 application factories (ApplicationFactoryComponents) realize the ApplicationFactory

interface, which is shown in Figure 16. SCA 2.2.2 and 4.1 application factories support the same

basic capabilities:

 Application deployment

 Application component connection, initialization and configuration

Figure 16: SCA 2.2.2 ApplicationFactory Interface

From a functional perspective, SCA 4.1 ApplicationFactoryComponents, see Figure 17, are very

similar to their SCA 2.2.2 counterparts. The primary distinction is that the

ApplicationFactoryComponent has an associated registry, ComponentRegistry, with which its

deployed ApplicationComponents register, as opposed to registering with a Naming Service.

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

24
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 17: SCA 4.1 ApplicationFactoryComponent

The ApplicationFactoryComponent is unique in that it is not a BaseComponent, a fact that serves to

minimize some of the differences that would be encountered when migrating an SCA 2.2.2

implementation.

4.5.1 Interface Changes

4.5.1.1 ApplicationFactory

Figure 18: ApplicationFactory Interface Comparison

1. SCA 4.1 eliminates the identifier attribute and moves the softwareProfile to the

ComponentType structure.

2. SCA 4.1 introduces new data types for multi-core processor support.

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

25
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 19: ApplicationFactory Interface Operation Comparison

1. SCA 4.1 modifies the create operation’s return value from an Application interface to a

ComponentType structure.

3. SCA 4.1 adds the deploymentDependencies parameter to enable enhanced deployment

support.

4. SCA 4.1 introduces the executionAffinityAssignments parameter for multi-core processor

support.

4.5.2 Implementation Changes

4.5.2.1 Requirements Driven

The SCA 2.2.2 application factory contains approximately 35 requirements. The SCA 4.1

ApplicationFactoryComponent appears to have many more requirements with 64, or when the

structural and modeling oriented requirements are removed 63.

However, many of the 35 new ApplicationFactory requirements would not need to be implemented

in a scenario where an SCA 2.2.2 implementation was being migrated to SCA 4.1 because they are

associated with features that were not available within the older specification. 16 requirements,

SCA84*, SCA68*, SCA71*, SCA72*, SCA73*, SCA76*, SCA81*, SCA83*, SCA85*, SCA69*,

SCA70*, SCA77*, SCA86*, SCA87*, SCA98*, SCA524*, are associated with Application

Backwards Compatibility – an SCA 4.1 Core Framework managing SCA 2.2.2 Applications;

SCA70 was introduced to support sub-applications within an application, nested deployment;

SCA575 was introduced to in support to allow an ApplicationFactoryComponent to deploy

operations and utilize the capabilities of multi-core processors, Core Affinity; and nine

requirements, SCA92, SCA93, SCA94, SCA95, SCA96, SCA97, SCA105, SCA106, SCA98 are

associated with the SCA 2.2.2 Channel Extension and could be reused if the 2.2.2 product

implemented the extension. Therefore, the SCA 4.1 ApplicationFactoryComponent effectively

introduces eight new requirements.

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

26
Distribution Statement on the Cover Page applies to all pages of this document.

Three of the new requirements, SCA77, SCA86 and SCA87 are associated with component

identifiers and should result in a minimal change for a CF developer as identifier because the logic

to create an identifier exists at other locations within the Core Framework and can be reused.

SCA69 instructs the developer on how to handle the deploymentDependencies parameter. This

change should also be relatively straightforward as it can reuse or leverage other code which

accommodates property precedents. SCA576 dictates how an ApplicationFactoryComponent

should store information about its deployed components and this should be a trivial extension to the

ComponentType structure. SCA570 requires the ApplicationFactoryComponent to throw an

exception if the ApplicationManagerComponent already exits. This should be a simple extension to

throw the exception, as it is likely that logic already exists to check the value. SCA542 modifies the

parameters passed to an executable device to include a reference to the ComponentRegistry

instance, which should be an easy modification to the existing execute call. Lastly, SCA555

introduces a check that instructs the ApplicationFactoryComponent on when it should instantiate an

SCA 2.2.2 application. This final change should also be relatively simple because most Core

Framework implementations know how to extract and process domain profile information.

4.5.2.2 Structural

An SCA 4.1 Core Framework developer that realizes the ApplicationFactory interface will need to

define their own interface(s) to represent the ApplicationFactoryComponent, for example the

myApplicationFactory interface defined below, because one is not provided by the framework.

interface myApplicationFactory : CF::ApplicationFactory

If the objective of the migration is to transition the existing implementation to SCA 4.1 and

minimize the resources required, then the new SCA 4.1 ApplicationFactoryComponent features of

Channel Extension, Nested Deployment, Multicore Support and Application Backwards

Compatible will not be implemented.

1. Eliminate the identifier and softwareProfile ApplicationFactory interface attributes and

reconstitute them as fields within the ApplicationFactoryComponent’s ComponentType

representation.

2. Refactor the application’s proxy object that is instantiated by the ApplicationFactory from a

realized Application to ApplicationManager interface.

3. Refactor the ApplicationFactoryComponent to construct and populate a ComponentType

structure.

4. Modify the create operation’s return type from an Application object to a ComponentType

structure which represents the ApplicationManager.

5. Modify the create operation implementation to accommodate the existence of the

deploymentDependencies parameter.

6. Modify the create operation implementation to accommodate the existence of the

executionAffinityAssignments parameter.

7. Convert the application factory’s association with a Naming Service implementation to an

association with a ComponentRegistry. The ComponentRegistry will serve as the repository

with which deployed components will register (may require implementation of

ComponentRegistry).

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

27
Distribution Statement on the Cover Page applies to all pages of this document.

8. Store the components deployed by the ApplicationFactoryComponent within the

ComponentType’s specializedInfo.

9. Update the ApplicationFactoryComponent’s call to the platform’s execution operation to

pass a reference to a ComponentRegistry.

10. Update any use of the ResourceFactory interface to refer to a

ComponentFactoryComponent reference.

11. Update any use of the ExecutableDevice interface to refer to a

ExecutableDeviceComponent reference.

12. Update any use of the LoadableDevice interface to refer to a LoadableDeviceComponent

reference.

13. Update any use of the Device interface to refer to a DeviceComponent reference.

14. Update any use of the Resource interface to refer to a ManageableApplicationComponent

reference.

15. Modify any use of the DomainManagementObjectAddedEventType to use a

ComponentChangeEventType.

16. Extend the ApplicationFactoryComponent to create a unique connection identifier when

none is provided.

4.6 SCA 4.1 DEVICEMANAGERCOMPONENT

SCA 2.2.2 device managers (DeviceManagerComponents) realize the DeviceManager interface,

illustrated in Figure 20, which inherits the SCA 2.2.2 PortSupplier and PropertySet interfaces.

SCA 2.2.2 and 4.1 device managers support the same basic capabilities:

 Device and Service deployment

 Node management

Figure 20: SCA 2.2.2 DeviceManager Interface

SCA 4.1 removed the DeviceManager interface and modifies the DeviceManagerComponent to

have an associated registry, ComponentRegistry, with which the components it deploys register.

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

28
Distribution Statement on the Cover Page applies to all pages of this document.

The DeviceManagerComponent, which is shown in Figure 21, inherits the functions and

capabilities of a BaseComponent and consequently can be managed as such.

Figure 21: SCA 4.1 DeviceManagerComponent

A developer could define the following SCA 4.1 compliant interface:

interface myDeviceManager : CF::DeploymentAttributes,

ComponentIdentifier

The inheritance of the CF::DeploymentAttributes interfaces provides external clients with the

ability to interrogate the DeviceManagerComponent regarding the platform components it

deployed.

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

29
Distribution Statement on the Cover Page applies to all pages of this document.

4.6.1 Interface Changes

4.6.1.1 DeviceManager Attributes

Figure 22: DeviceManager Interface Comparison

1. SCA 4.1 removes the DeviceManager interface.

2. SCA 4.1 removes the label attribute.

3. SCA 4.1 moves the identifier attribute to the ComponentIdentifier interface and collapses

the registeredDevices and registeredServices attributes to the deployedComponents attribute

within the DeploymentAttributes interface.

4. SCA 4.1 relocates the deviceConfigurationProfile, fileSys, registeredComponents and

registeredServices (deployedComponents) attributes to the ComponentType structure.

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

30
Distribution Statement on the Cover Page applies to all pages of this document.

4.6.1.2 DeviceManager Operations

Figure 23: DeviceManager Interface Operation Comparison

1. SCA 4.1 relocates the shutdown operation within the ReleasableManager interface.

2. SCA 4.1 abstracts the registerService and registerDevice operations to registerComponent;

the unregisterService and unregisterDevice operations to unregisterComponent SCA 4.1;

removes registration and unregistration operations from the device manager and places

them in independent registry components.

3. SCA 4.1 removes the getComponentImplementationId operation and maintains

implementation properties within the ComponentType structure.

4.6.2 Implementation Changes

4.6.2.1 Requirements Driven

SCA 2.2.2 device managers contain approximately 56 requirements. The SCA 4.1

DeviceManagerComponent contains approximately 91 requirements and when the structural and

modeling oriented requirements are removed there are about 70. Many of the 33 new requirements

introduced in SCA 4.1 would not need to be implemented if an SCA 2.2 device manager was being

migrated. 25 of the new requirements are a result of the DeviceManagerComponent’s inheritance

of BaseComponent and which would not need to be fully implemented in order to provide SCA

2.2.2 functionality. Once the BaseComponent requirements are removed there are eight new

requirements that would need to be implemented.

Two requirements, SCA429 and SCA153 provide text clarifications from SCA 2.2.2 and may

already be implemented. If they require a change, the effort should be minimal. SCA 4.1 introduces

four requirements SCA438, SCA439, SCA449, SCA573 which are associated with support for the

PlatformComponentFactory. The introduction of the PlatformComponentFactory represents a new

capability within SCA 4.1 and would require a moderate change within a

DeviceManagerComponent as it introduces new logic, but the code should be similar to an

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

31
Distribution Statement on the Cover Page applies to all pages of this document.

ApplicationFactoryComponent’s use of the ComponentFactory. One new requirement, SCA572, is

associated with saving component allocation properties and requires a minimal change to store the

property information within the ComponentType structure. The final new requirement is SCA133

and it should require a minimal change as it introduces a new exception case.

4.6.2.2 Structural

An SCA 4.1 Core Framework developer will need to define their own interface(s) to represent a

DeviceManagerComponents because it is not provided by the framework.

An SCA 2.2.2 component that uses the DeviceManager interface will require the following

changes beyond those required of a BaseComponent to be migrated to SCA 4.1 compliance:

1. Remove the DeviceManager interface in lieu of a new, user-defined interface.

2. Modify any interfaces associated with an SCA component could be modified to inherit from

a non-CORBA CF::Port equivalent in order to minimize changes to an existing

implementation.

3. Construct a container of type ComponentType for the DeviceManager component.

4. Relocate the deviceConfigurationProfile attribute information within the ComponentType

container.

5. Relocate the fileSys attribute information within the ComponentType container.

6. Relocate the identifier attribute information within the ComponentType container.

7. Relocate the shutdown operation implementation to the ReleasableManager interface.

8. Copy the identifier attribute information within the ComponentIdentifier interface.

9. Remove the label attribute.

10. Remove the Device and Service registration and unregistration operations in favor of a

ComponentRegistry implementation (if needed those operations could provide the basis of

the registry implementation).

11. Migrate the logic which stored data within the registeredDevices and registeredServices to

be associated with the component registry.

12. Store the information about the registered (deployed) components within the

DeploymentAttributes interface.

13. Store the information about the registered (deployed) components within the

ComponentType container.

14. Remove the getComponentImplementationId interface and ensure that the data that would

have be retrieved through that interface is stored within the ComponentType container.

4.7 SCA 4.1 DOMAINMANAGERCOMPONENT

SCA 2.2.2 domain managers (DomainManagerComponents) realize the DomainManager interface,

that is shown in Figure 24, which inherits the PropertySet interface. SCA 2.2.2 and 4.1 domain

managers support the same basic capabilities:

 Application installation

 Component registration and unregistration

 Management of applications, application factories and device managers within the domain

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

32
Distribution Statement on the Cover Page applies to all pages of this document.

 Event channel registration for external consumers

Figure 24: SCA 2.2.2 DomainManager Interface

The SCA 4.1 DomainManagerComponent has an associated registry, ComponentRegistry, with

which the components it managers register. The DomainManagerComponent, illustrated in Figure

25, inherits the functions and capabilities of a BaseComponent and consequently can be managed

as such.

Figure 25: SCA 4.1 DomainManagerComponent

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

33
Distribution Statement on the Cover Page applies to all pages of this document.

A developer could define the following SCA 4.1 compliant interface:

interface myDomainManager : CF::DomainManager,

CF::DomainInstallation

Where the inheritance of the CF::DomainInstallation interfaces provides the

DomainManagerComponent with the ability to install applications.

4.7.1 Interface Changes

4.7.1.1 DomainManager Types and Exceptions

Figure 26: DomainManager Interface Comparison

1. SCA 4.1 preserves the DomainManager interface but decomposes it to create two new

interfaces, DomainInstallation and EventChannelRegistry.

2. SCA 4.1 relocates exceptions to the new interfaces.

3. SCA 4.1 removes specialized type definitions.

4. SCA 4.1 relocates registration exceptions to component registry interfaces (distinct from the

DomainManager interface).

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

34
Distribution Statement on the Cover Page applies to all pages of this document.

4.7.1.2 DomainManager Attributes

Figure 27: DomainManager Interface Attribute Comparison

1. SCA 4.1 uses a common type definition, CF::Components for managed elements.

2. SCA 4.1 relocates the identifier attribute to the ComponentIdentifier interface.

4.7.1.3 DomainManager Registration Operations

Figure 28: DomainManager Interface Registration Operation Comparison

1. SCA 4.1 removes registration and unregistration operations from DomainManager and

places them in the ComponentRegistry interface for registration and

FullComponentRegistry interface for unregistration.

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

35
Distribution Statement on the Cover Page applies to all pages of this document.

4.7.2 Implementation Changes

4.7.2.1 Requirements Driven

SCA 2.2.2 domain managers contain approximately 130 requirements, and the count decreases to

124 in SCA 4.1. However, when the structural and modeling oriented requirements are removed,

the count is decreased to about 112 allocated 68 requirements.

Similar to the DeviceManagerComponent, several new DomainManagerComponent requirements

were introduced with its BaseComponent inheritance which do not need to be implemented in the

migration scenario. Therefore, there are nine new DomainManagerComponent requirements

beyond those of the BaseComponent. SCA518 establishes the domain manager as a safety valve to

disconnect components that are being torn down. This enhancement should be a minimal change,

as it should reuse other releaseObject logic. SCA571 introduces a requirement for the

installApplication operation to return a ComponentType structure, which should be a minimal

change that requires an implementation to reorganize most of the information that is maintained

within the code. Six requirements, SCA132, SCA135, SCA149, SCA194, SCA198 and SCA199

are associated with component registration. The change should be a minimal impact, as it will be a

refactoring of logic from the preexisting registration and unregistration operations. One

requirement, SCA552, is associated with backwards compatibility and should require a minimal

change, to check for the presence of an SCA 2.2.2 application and throw an exception when they

are not handled by the Core Framework.

4.7.2.2 Structural

An SCA 4.1 Core Framework developer that realizes the DomainManager interface will need to

define their own interface(s) to represent the DomainManagerComponent, for example the

myDomainManager interface described earlier.

An SCA 2.2.2 component that implements the DomainManager interface will require the following

changes beyond those required of a BaseComponent to be migrated to SCA 4.1 compliance:

1. Refactor any use of the PropertySet interface operations to reflect its location within the

DomainManagerComponent.

2. Implement the new DomainInstallation interface which will be inherited by the

DomainManager interface.

3. Implement the new EventChannelRegistry interface which will be inherited by the

DomainManager interface.

4. Remove the device, service and device manager registration and unregistration operations

in favor of a ComponentRegistry implementation (if needed those operations could provide

the basis of the registry implementation).

5. Relocate the installation related operations to the new DomainInstallation interface.

6. Relocate the event channel registration related operations to the new EventChannelRegistry

interface.

7. Relocate the registration and unregistration exceptions to the ComponentRegistry

implementation.

8. Relocate the installation and uninstallation exceptions to the DomainInstallation interface.

9. Relocate the event channel registration exceptions to the EventChannelRegistry interface.

SCA V 2.2.2 Product Migration Guide Version: 0.1

26 August 2016

36
Distribution Statement on the Cover Page applies to all pages of this document.

10. Remove the type definition of the specialized ApplicationSequence type.

11. Remove the type definition of the specialized ApplicationFactorySequence type.

12. Remove the type definition of the specialized DeviceManagerSequence type.

13. Rename the deviceManagers attribute to managers and change its type to be

ComponentType.

14. Modify the applications attribute to be type ComponentType.

15. Modify the applicationFactories attribute to be type ComponentType.

16. The implementation will need to introduce the new ComponentIdentifier interface which

will be inherited by the DomainManager interface.

17. Relocate the identifier attribute to the new ComponentIdentifier interface.

18. Modify the installApplication interface to return a ComponentType rather than a void.

	1 Scope
	1.1 Informative References

	2 Overview
	3 SCA 4.1 Structure
	4 Migration of 2.2.2 Products
	4.1 SCA 4.1 Common Construct – BaseComponent
	4.1.1 Interface Changes
	4.1.1.1 Resource
	4.1.1.2 LifeCycle
	4.1.1.3 PropertySet
	4.1.1.4 PortSupplier
	4.1.1.5 TestableObject

	4.1.2 Implementation Changes
	4.1.2.1 Requirements Driven
	4.1.2.1.1 Resource
	4.1.2.1.2 PortSupplier

	4.1.2.2 Structural

	4.2 SCA 4.1 ManageableApplicationComponent
	4.2.1 Interface Changes
	4.2.2 Implementation Changes
	4.2.2.1 Requirements Driven
	4.2.2.2 Structural

	4.3 SCA 4.1 Device Component
	4.3.1 Interface Changes
	4.3.1.1 Device

	4.3.2 Implementation Changes
	4.3.2.1 Requirements Driven
	4.3.2.2 Structural

	4.4 SCA 4.1ApplicationManagerComponent
	4.4.1 Interface Changes
	4.4.1.1 Application

	4.4.2 Implementation Changes
	4.4.2.1 Requirements Driven
	4.4.2.2 Structural

	4.5 SCA 4.1 ApplicationFactoryComponent
	4.5.1 Interface Changes
	4.5.1.1 ApplicationFactory

	4.5.2 Implementation Changes
	4.5.2.1 Requirements Driven
	4.5.2.2 Structural

	4.6 SCA 4.1 DeviceManagerComponent
	4.6.1 Interface Changes
	4.6.1.1 DeviceManager Attributes
	4.6.1.2 DeviceManager Operations

	4.6.2 Implementation Changes
	4.6.2.1 Requirements Driven
	4.6.2.2 Structural

	4.7 SCA 4.1 DomainManagerComponent
	4.7.1 Interface Changes
	4.7.1.1 DomainManager Types and Exceptions
	4.7.1.2 DomainManager Attributes
	4.7.1.3 DomainManager Registration Operations

	4.7.2 Implementation Changes
	4.7.2.1 Requirements Driven
	4.7.2.2 Structural

UNCLASSIFIED

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

August 2016

JTNC Standards

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

• There are three distinct families of SCA 2.2.2

developers

– Application Developers

 Build Waveforms using the Base Application Interfaces

 Migrate in accordance with the application migration guidance

– Device Developers

 Build Devices using the Base Device Interfaces

 Migrate in accordance with the Device migration guidance

– Infrastructure Developers

 Build Waveforms using the Framework Control Interfaces

 Migrate in accordance with the Application, ApplicationFactory,

DeviceManager or DomainManager migration guidance depending

on which components are supported

2

SCA 2.2.2 Product Overview

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

SCA 2.2.2 application Migration

3

SCA 2.2.2 applications (ApplicationComponents) realize the Resource and optionally
ResourceFactory interfaces
Resource is a monolithic interface which incorporates several lower level interfaces

SCA 2.2.2 application components (e.g. waveform components) approximate SCA
4.1 BaseComponent functionality

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
4

SCA 4.1 “application”

• SCA 4.1 has been restructured to explain the specification in an interface / component representation
• The Resource and Device interfaces have been removed, the developer has the responsibility of

defining interfaces which when realized provide equivalent functionality
• A developer could define the following SCA 4.1 compliant interface which effectively mimics the

2.2.2 Resource (there is a difference in the identifier definition which will be accounted for):
̶ interface BaseResource : LifeCycle, TestableInterface, PropertySet, PortAccessor, ControllableInterface

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
5

SCA 4.1 ApplicationComponent

• A developer could utilize the user-defined BaseResource as the compliant interface, which is
equivalent to a 2.2.2 Resource (LifeCycle is picked up through BaseResource), within an application

• BaseComponents are responsible for the same requirements as those of an ApplicationComponent
with the exception of the AEP requirement

• An application component factory can be provided as a separate interface if needed
̶ interface BaseApplicationComponentFactory: ComponentFactory, BaseResouce

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
6

TestableObject Differences

6

interface TestableObject {

exception UnknownTest {

 };

void runTest (

 in unsigned long testId,

 inout CF::Properties

testValues)

 raises

(CF::TestableObject::Unkno

wnTest,

CF::UnknownProperties);

};

interface TestableInterface {

exception UnknownTest {

 };

void runTest (

 in unsigned long testId,

 inout CF::Properties

testValues)

 raises

(CF::TestableInterface::Unkno

wnTest,

CF::UnknownProperties);

 };

1 - SCA 4.1 renames the TestableObject interface to TestableInterface

SCA 2.2.2 SCA 4.1

1

1 1

1

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
7

PropertySet Differences

7

interface PropertySet {
exception InvalidConfiguration {

 string msg;

 CF::Properties invalidProperties;

 };

exception PartialConfiguration {

 CF::Properties invalidProperties;

 };

void configure (

 in CF::Properties configProperties)

 raises

(CF::PropertySet::InvalidConfiguration,

CF::PropertySet::PartialConfiguration);

void query (

 inout CF::Properties configProperties)

 raises (CF::UnknownProperties);

 };

interface PropertySet {
exception InvalidConfiguration {

 string msg;

 CF::Properties invalidProperties;

 };

exception PartialConfiguration {

 CF::Properties invalidProperties;

 };

void configure (

 in CF::Properties configProperties)

 raises

(CF::PropertySet::InvalidConfiguration,

CF::PropertySet::PartialConfiguration);

void query (

 inout CF::Properties configProperties)

 raises (CF::UnknownProperties);

};

The interfaces are identical

SCA 2.2.2 SCA 4.1

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
8

LifeCycle Differences

8

interface LifeCycle {

exception InitializeError {

 CF::StringSequence

errorMessages;

 };

exception ReleaseError {

 CF::StringSequence

errorMessages;

 };

void initialize ()

 raises

(CF::LifeCycle::InitializeError);

void releaseObject ()

 raises

(CF::LifeCycle::ReleaseError);

};

interface LifeCycle {

exception InitializeError {

 CF::StringSequence

errorMessages;

 };

exception ReleaseError {

 CF::StringSequence

errorMessages;

 };

void initialize ()

 raises

(CF::LifeCycle::InitializeError);

void releaseObject ()

 raises

(CF::LifeCycle::ReleaseError);

 };

The interfaces are identical

SCA 2.2.2 SCA 4.1

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
9

Port & PortSupplier Differences

9

interface PortAccessor {
struct ConnectionIdType {

 string connectionId;

 string portName;

 };

typedef sequence <ConnectionIdType> Disconnections;

struct ConnectionType {

 ConnectionIdType portConnectionId;

 Object portReference;

 };

typedef sequence <ConnectionType> Connections;

struct ConnectionErrorType {

 ConnectionIdType portConnectionId;

 unsigned short errorCode;

 };

exception InvalidPort {

 ConnectionErrorType invalidConnections;

 };

void connectUsesPorts(

 in CF::PortAccessor::Connections portConnections)

 raises(CF::PortAccessor::InvalidPort);

void disconnectPorts(

 in CF::PortAccessor::Disconnections portDisconnections)

 raises(CF::PortAccessor::InvalidPort);

void getProvidesPorts(

 inout CF::PortAccessor::Connections portConnections)

 raises(CF::PortAccessor::InvalidPort);

 };

1 - SCA 4.1 renames interfaces
2 - SCA 4.1 eliminates exceptions

interface PortSupplier {

exception UnknownPort {

 };

Object getPort (in string name)

 raises (CF::PortSupplier::UnknownPort);

};

interface PortAccessor {
struct ConnectionIdType {

 string connectionId;

 string portName;

 };

typedef sequence <ConnectionIdType> Disconnections;

struct ConnectionType {

 ConnectionIdType portConnectionId;

 Object portReference;

 };

typedef sequence <ConnectionType> Connections;

struct ConnectionErrorType {

 ConnectionIdType portConnectionId;

 unsigned short errorCode;

 };

exception InvalidPort {

 ConnectionErrorType invalidConnections;

 };

void connectUsesPorts(

 in CF::PortAccessor::Connections portConnections)

 raises(CF::PortAccessor::InvalidPort);

void disconnectPorts(

 in CF::PortAccessor::Disconnections portDisconnections)

 raises(CF::PortAccessor::InvalidPort);

void getProvidesPorts(

 inout CF::PortAccessor::Connections portConnections)

 raises(CF::PortAccessor::InvalidPort);

 };

interface Port {
exception InvalidPort {

 unsigned short errorCode;

 string msg;

 };

exception OccupiedPort {

 };

void connectPort (

 in Object connection,

 in string connectionId)

 raises (CF::Port::InvalidPort,

 CF::Port::OccupiedPort);

 void disconnectPort (

 in string connectionId)

 raises (CF::Port::InvalidPort);

};

SCA 2.2.2 SCA 4.1 1 1

1

3

2

2

3

4

4

4
4

4

4

3 - SCA 4.1 repurposes exception
4 - SCA 4.1 renames operations and allows for multiple connections

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
10

Resource Differences

10

interface Resource : LifeCycle,

TestableObject, PropertySet, PortSupplier

{
exception StartError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

exception StopError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

readonly attribute string identifier;

void start ()

 raises (CF::Resource::StartError);

void stop ()

 raises (CF::Resource::StopError);

 };

1 - SCA 4.1 removes Resource interface
2 - SCA 4.1 introduces new ControllableInterface and ComponentIdentifier interfaces to replace Resource
3 - SCA 4.1 introduces new attribute
4 - SCA 4.1 re-scopes exceptions

interface Resource : LifeCycle,

TestableObject, PropertySet, PortSupplier

{
exception StartError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

exception StopError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

readonly attribute string identifier;

void start ()

 raises (CF::Resource::StartError);

void stop ()

 raises (CF::Resource::StopError);

 };

interface ControllableInterface {
exception StartError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

exception StopError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

readonly attribute boolean started;

void start ()

 raises (CF::ControllableInterface::StartError);

void stop ()

 raises (CF::ControllableInterface::StopError);

};

interface ComponentIdentifier {

 readonly attribute string identifier;

 };

SCA 2.2.2 SCA 4.1 1 2

2

3

4

4

4

4

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

• Both SCA 2.2.2 and 4.1 application components
support the same basic capabilities

– Configuration management

– Operations (start/stop) management

– Life cycle support

– Connectivity management

– Test management

• There is a distinct difference in the number of
allocated requirements

– SCA 2.2.2 75 requirements

– SCA 4.1 70 requirements, however once the structural
and modeling oriented requirements are removed there
are 58 effective requirements

11

SCA Application Requirements

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

• SCA 4.1 introduces seven (7) requirements that are
distinct from the SCA 2.2.2 baseline

– Three (3) requirements resulting from port restructure ~ 2 a
result of the operations handling multiple ports

– Three (3) requirements associated with the new started
attribute ~ minimal change

– One (1) requirement associated with the new registration
approach ~ registration moved to component registry rather
than the Naming Service

• Modifications to accommodate component information
held within ComponentType structure

• There have been changes within the AEP which may
necessitate alternate operations

12

Development Scope – Ported Application

Component

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

SCA 2.2.2 Device Migration

13

SCA 2.2.2 devices (DeviceComponents) realize the Device interface
Device inherits the SCA 2.2.2 Resource interface

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
14

SCA 4.1 DeviceComponent

• The Device interface has been removed, the developer has the responsibility of defining interfaces
which when realized provide equivalent functionality

• DeviceComponents inherit BaseComponent interfaces and semantics
• A developer could utilize the user-defined BaseResource to create a compliant interface which is

equivalent to a 2.2.2 Device (LifeCycle is picked up through BaseResource):
̶ interface BaseDevice: BaseResource, DeviceAttributes, AdministrableInterface, CapacityManagement

• The AggregateDevice association can be provided at the component level if needed

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
15

Device Differences

15

interface Device : Resource {
 exception InvalidState {
 string msg;
 };
 exception InvalidCapacity {
 string msg;
 CF::Properties capacities;
 };
 enum AdminType {
 LOCKED,
 SHUTTING_DOWN,
 UNLOCKED
 };
 enum OperationalType {
 ENABLED,
 DISABLED
 };
 enum UsageType {

 IDLE,

 ACTIVE,

 BUSY
 };

 readonly attribute CF::Device::UsageType usageState;

 attribute CF::Device::AdminType adminState;

 readonly attribute CF::Device::OperationalType operationalState;

 readonly attribute string softwareProfile;

 readonly attribute string label;

 readonly attribute CF::AggregateDevice compositeDevice;
 boolean allocateCapacity (in CF::Properties capacities)
 raises (CF::Device::InvalidCapacity,
CF::Device::InvalidState);
 void deallocateCapacity (in CF::Properties capacities)
 raises (CF::Device::InvalidCapacity,
CF::Device::InvalidState);

};

 interface CapacityManagement {
 enum UsageType {

 IDLE,

 ACTIVE,

 BUSY

 };

 readonly attribute CF::CapacityManagement::UsageType usageState;

 exception InvalidCapacity {

 string msg;

 CF::Properties capacities;

 };

boolean allocateCapacity (

 in CF::Properties capacities)

 raises (CF::CapacityManagement::InvalidCapacity,

 CF::InvalidState);

 void deallocateCapacity (

 in CF::Properties capacities)

 raises (CF::CapacityManagement::InvalidCapacity,

 CF::InvalidState);

 };

interface DeviceAttributes : ComponentIdentifier {
enum OperationalType {

 ENABLED,

 DISABLED

 };

readonly attribute CF::DeviceAttributes::OperationalType operationalState;

};

interface AdministratableInterface {
enum AdminType {

 LOCKED,

 SHUTTING_DOWN,

 UNLOCKED

 };

attribute CF::AdministratableInterface::AdminType adminState;

};

1 - SCA 4.1 removes Device interface and re-scopes exceptions
2 - SCA 4.1 relocates InvalidState exception
3 - SCA 4.1 eliminates interface attributes
4 - SCA 4.1 introduces new interfaces to replace Device

SCA 2.2.2 SCA 4.1 1

1

1

1

1

2

3

4

4

4

4

4

4

4

4

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
16

LoadableDevice Differences

16

interface LoadableDevice : Device

{

 enum LoadType {

 KERNEL_MODULE,

 DRIVER,

 SHARED_LIBRARY,

 EXECUTABLE

 };

exception InvalidLoadKind {};

exception LoadFail {

 CF::ErrorNumberType errorNumber; string msg;};

void load(in FileSystem fs, in string fileName, in LoadType

loadKind)

raises

(CF::Device::InvalidState,CF::LoadableDevice::InvalidLo

adKind,CF::InvalidFileName,CF::Loadable

 Device::LoadFail);

void unload(in string fileName)

raises (CF::Device::InvalidState,CF::InvalidFileName);

};

interface LoadableInterface

{

enum LoadType {

KERNEL_MODULE,

DRIVER,

SHARED_LIBRARY,

EXECUTABLE

};

exception InvalidLoadKind {};

exception LoadFail {CF::ErrorNumberType errorNumber;

string msg;};

void load (in CF::FileSystem fs, in string fileName, in

CF::LoadableInterface::LoadType loadKind)

raises (CF::InvalidState,

CF::LoadableInterface::InvalidLoadKind,

CF::InvalidFileName, CF::LoadableInterface::LoadFail);

void unload (in string fileName)

raises (CF::InvalidState, CF::InvalidFileName);};

};

1 - SCA 4.1 renames LoadableDevice interface to LoadableInterface and removes inheritance
2 - SCA 4.1 re-scopes exception locations to new interface

SCA 2.2.2 SCA 4.1

1 1

2 2

2
2

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
17

ExecutableDevice Differences

17

interface ExecutableDevice : LoadableDevice

{

 exception InvalidProcess { CF::ErrorNumberType errorNumber; string

msg;};

 exception InvalidFunction { };

 typedef long ProcessID_Type;

 exception InvalidParameters { CF::Properties invalidParms;};

 exception InvalidOptions { CF::Properties invalidOpts; };

 const string PRIORITY_ID = "PRIORITY";

 const string STACK_SIZE_ID = "STACK_SIZE";

 exception ExecuteFail { CF::ErrorNumberType errorNumber; string msg; };

 ProcessID_Type execute(in string name, in Properties options, in

Properties parameters)

 raises (CF::Device::InvalidState,

CF::ExecutableDevice::InvalidFunction,

CF::ExecutableDevice::InvalidParameters,CF::ExecutableDevice::InvalidOptions,

CF::InvalidFileName, CF::ExecutableDevice::ExecuteFail);

 void terminate(in ProcessID_Type processId)

 raises (CF::ExecutableDevice::InvalidProcess,

CF::Device::InvalidState);

};

interface ExecutableInterface

{

 exception InvalidProcess { CF::ErrorNumberType errorNumber; string

msg; };

 exception InvalidFunction {};

 struct ExecutionID_Type {

 unsigned long long threadId;

 unsigned long long processId;

 string processCollocation;

 CF::ULongSeq cores; };

 exception InvalidParameters { CF::Properties invalidParms; };

 exception InvalidOptions { CF::Properties invalidOpts; };

 const string STACK_SIZE_ID = "STACK_SIZE";

 const string PRIORITY_ID = "PRIORITY";

 const string EXEC_DEVICE_PROCESS_SPACE = "DEVICE";

 const string PROCESS_COLLOCATION_ID =

"PROCESS_COLLOCATION";

 const string ENTRY_POINT_ID = "ENTRY_POINT";

 const string CORE_AFFINITY_ID = "CORE_AFFINITY";

 exception ExecuteFail { CF::ErrorNumberType errorNumber; string msg; };

 void terminate (

 in CF::ExecutableInterface::ExecutionID_Type executionId)

 raises (CF::ExecutableInterface::InvalidProcess,CF::InvalidState);

 CF::ExecutableInterface::ExecutionID_Type execute (

 in string filename, in CF::Properties options, in CF::Properties parameters)

 raises (CF::InvalidState, CF::ExecutableInterface::InvalidFunction,

 CF::ExecutableInterface::InvalidParameters,

 CF::ExecutableInterface::InvalidOptions, CF::InvalidFileName,

 CF::ExecutableInterface::ExecuteFail);

};

1 - SCA 4.1 renames ExecutableDevice interface to ExecutableInterface and removes inheritance
2 - SCA 4.1 defined ExecutionID_Type in lieu of ProcessID_Type for execute return value
3 - SCA 4.1 defined new constants for multi core processor support
4 - SCA 4.1 modifies operation parameters and/or return values
5 - SCA 4.1 re-scopes exceptions to new interface names

SCA 2.2.2 SCA 4.1 1
1

2 2

3

4

4

4

4

5

5

5

5

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

• Both SCA 2.2.2 and 4.1 devices support the same
basic capabilities

– Capacity management

– Configuration management

– Operations/State management

– Life cycle support

– Connectivity management

– Test management

• There is a distinct difference in the number of allocated
requirements

– SCA 2.2.2 98 requirements

– SCA 4.1 99 requirements, however once the structural and
modeling oriented requirements are removed there are 84
effective requirements

18

SCA Device Requirements

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

• SCA 4.1 introduces seven (7) requirements that are
distinct from the SCA 2.2.2 baseline
– Three (3) requirements resulting from port restructure ~ Two

(2) a result of the operations handling multiple ports

– Three (3) requirements associated with the new started
attribute ~ minimal change

– One (1) requirement associated with the new registration
approach ~ registration moved to component registry rather
than DeviceManager

• Modifications to accommodate component information
held within ComponentType structure

• Neither the LoadableInterface nor ExecutableInterface
interfaces introduce new requirements
– Five (5) requirements will need code modifications to account

for different parameters ~ minimal change

19

Development Scope – Ported Device

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

SCA 2.2.2 Application Migration

20

SCA 2.2.2 applications (ApplicationManagerComponents) realize the Application interface
Application inherits the SCA 2.2.2 Resource interface
Application is a monolithic interface which incorporates several lower level interfaces

«readonly» profile : string(idl)

«readonly» name : string(idl)

«readonly» componentNamingContexts : ComponentElementSequence

«readonly» componentProcessIds : ComponentProcessIdSequence

«readonly» componentDevices : DeviceAssignmentSequence

«readonly» componentImplementations : ComponentElementSequence

«CORBAInterface»

Application

start() : void

stop() : void

«readonly» identifier : string(idl)

«CORBAInterface»

Resource

«inherits»

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
21

SCA 4.1 ApplicationManagerComponent

• The developer has the responsibility of defining an interface which when realized identifies the
provided functionality

• The ApplicationManagerComponent is monolithic and incorporates several lower level interfaces
• An ApplicationManagerComponent inherits the functions and capabilities of a BaseComponent

and consequently can be managed as such
• A developer could define the following SCA 4.1 compliant interface which provides the capability

for the application manager to manage applications:
̶ interface myApplicationManager : CF::ApplicationManager

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
22

Application Differences

22

interface Application : Resource {

 struct ComponentProcessIdType {

 string componentId;

 unsigned long processId;

 };

 typedef sequence <ComponentProcessIdType>

 ComponentProcessIdSequence;

 struct ComponentElementType {

 string componentId;

 string elementId;

 };

 typedef sequence <ComponentElementType>

 ComponentElementSequence;

 readonly attribute

 CF::Application::ComponentElementSequence

 componentNamingContexts;

 readonly attribute

 CF::Application::ComponentProcessIdSequence

 componentProcessIds;

 readonly attribute CF::DeviceAssignmentSequence

 componentDevices;

 readonly attribute

 CF::Application::ComponentElementSequence

 componentImplementations;

 readonly attribute string profile;

 readonly attribute string name;

};

interface ApplicationManager : LifeCycle,

 PortAccessor, PropertySet, TestableInterface,

 ControllableInterface {

 readonly attribute string name;

};

1 - SCA 4.1 removes attributes associated with the naming service
2 - SCA 4.1 removes attributes and incorporates their information within the ComponentType
3 - SCA 4.1 modifies the interface name and inheritance

SCA 2.2.2 SCA 4.1

1

2

2

2

3

3

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

• Both SCA 2.2.2 and 4.1 application managers

support the same basic capability

– Core Frameworks proxy for an externally developed

application

• There is a distinct difference in the number of

allocated requirements

– SCA 2.2.2 114 requirements

– SCA 4.1 83 requirements, however once the structural,

modeling oriented and backwards compatible

requirements are removed there are 68 effective

requirements

23

SCA Application Manager Requirements

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

• SCA 4.1 introduces 14 requirements that are distinct

from the SCA 2.2.2 baseline

– Six (6) requirements overlap with those introduced for a base

application component ~ minimal effort to integrate changes

– Four (4) requirements associated with ApplicationManager’s

role in external connections ~ minimal change, should mimic

base application component logic

– Four (4) requirements associated with clarifications in

ApplicationManager’s role in operation delegation ~ minimal to

medium effort to introduce new, not very complex logic

• Changes to accommodate information being held

within ComponentType structure

24

Development Scope – Ported Application

Manager

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

SCA 2.2.2 ApplicationFactory Migration

25

SCA 2.2.2 application factories (ApplicationFactoryComponents) realize the ApplicationFactory interface

create(in name : string(idl), in initConfiguration : Properties, in deviceAssignments : DeviceAssignmentSequence) : Application

«readonly» name : string(idl)

«readonly» identifier : string(idl)

«readonly» softwareProfile : string(idl)

«CORBAInterface»

ApplicationFactory

in invalidAssignments : DeviceAssignmentSequence

«exception»

CreateApplicationRequestError

in errorNumber : ErrorNumberType

in msg : string(idl)

«exception»

CreateApplicationError

in invalidProperties : Properties

«exception»

InvalidInitConfiguration

«uses» «uses» «uses»

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
26

SCA 4.1 ApplicationFactoryComponent

• The ApplicationFactoryComponent has an associated component registry
(ManageableApplicationComponents deployed by an ApplicationFactoryComponent register with the
registry (SCA82)

ApplicationFactoryComponent

«interface»

CF::ApplicationFactory Descriptor

ApplicationManagerComponent

LoadableDev iceComponent

ExecutableDev iceComponent

ApplicationComponentFactoryComponent

«interface»

CF::ComponentRegistry

Log Serv ice

Ev ent Serv ice

BaseComponent

ApplicationComponent

Dev iceComponent

+domainProfile

«produces» +targetLog

0..*

«manages»

+eventChannel

0..*

«creates»

+appManager

«creates»

+componentContainer 0..* «obtains

application

component»

+componentRegistry 0..1

«allocates»

+capacityProvider 1..*

«deploys»

+appComponent 1..*

«executes»
+processContainer

1..*

«connects»

+component

«loads»

+moduleContainer

1..*

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
27

ApplicationFactory Exception and

Attribute Differences

27

interface ApplicationFactory {

 exception CreateApplicationRequestError {

 CF::DeviceAssignmentSequence

 invalidAssignments; };

 exception CreateApplicationError {

 CF::ErrorNumberType errorNumber;

 string msg; };

 exception InvalidInitConfiguration {

 CF::Properties invalidProperties; };

 readonly attribute string name;

 struct ExecutionAffinityType

 {

 string componentId;

 string processCollocation;

 CF::ULongSeq coreAffinities;

 };

 typedef sequence <ExecutionAffinityType>

 ExecutionAffinitySequence;

interface ApplicationFactory {

 exception CreateApplicationRequestError {

 CF::DeviceAssignmentSequence

 invalidAssignments; };

 exception CreateApplicationError {

 CF::ErrorNumberType errorNumber;

 string msg; };

 exception InvalidInitConfiguration {

 CF::Properties invalidProperties; };

readonly attribute string name;

readonly attribute string identifier;

readonly attribute string softwareProfile;

};

;

1 - SCA 4.1 removes attributes and integrates their values within the associated ComponentType
2 - SCA 4.1 introduces new constructs for multi-core processor support

SCA 2.2.2 SCA 4.1

1

2

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
28

ApplicationFactory Operation Differences

interface ApplicationFactory {

CF::Application create (

in string name,

in CF::Properties initConfiguration,

in CF::DeviceAssignmentSequence deviceAssignments

)

raises (CF::ApplicationFactory::CreateApplicationError,

CF::ApplicationFactory::CreateApplicationRequestError,

CF::ApplicationFactory::InvalidInitConfiguration);

};

interface ApplicationFactory {

CF::ComponentType create (

 in string name,

 in CF::Properties initConfiguration,

 in CF::DeviceAssignmentSequence deviceAssignments,

 in CF::Properties deploymentDependencies,

 in CF::ApplicationFactory::ExecutionAffinitySequence

 executionAffinityAssignments

)

 raises (CF::ApplicationFactory::CreateApplicationError,

 CF::ApplicationFactory::CreateApplicationRequestError,

 CF::ApplicationFactory::InvalidInitConfiguration);

 };

};

1 - SCA 4.1 modifies operation return type
2 - SCA 4.1 adds parameters for enhanced deployment support
3 - SCA 4.1 adds parameter for multi-core processor support

SCA 2.2.2 SCA 4.1

1
1

3

2

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

• Both SCA 2.2.2 and 4.1 application factories

support the same basic capabilities

– Application deployment

– Application component connection, initialization and

configuration

• SCA 4.1 appears to have many more allocated

requirements

– SCA 2.2.2 35 requirements

– SCA 4.1 64 requirements, once the structural and

modeling oriented requirements are removed there are

63 effective requirements

29

SCA Appliction Factory Requirements

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

• Many of the 35 new requirements introduced within
SCA 4.1 would not need to implemented in a
migration from SCA 2.2.2

– 16 requirements are a byproduct of Application
Backwards Compatibility

– One (1) requirement associated with Nested Deployment

– One (1) requirement associated with Core Affinity

– Nine (9) requirements associated with the Channel
Extension ~ these could be reused if the 2.2.2 product
implemented the extension

• Consequently, there are eight (8) new
requirements which need to be implemented

30

SCA 4.1 New Application Factory

Requirements

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

• SCA 4.1 introduces eight (8) requirements that are distinct from the
SCA 2.2.2 baseline
– Three (3) requirement associated with component identifiers ~ should be a

minimal change for a CF developer as identifier creation logic exists at other
locations

– One (1) requirement associated with handling deploymentDependencies ~
should be a minimal change for a CF developer as other parts of the framework
already accommodate property precedents so the code could be reused or
leveraged

– One (1) requirement to store the deployed components ~ should be a trivial
extension to the ComponentType structure

– One (1) requirement to throw an exception if the ApplicationManagerComponent
exists ~ should be a trivial and logic to check probably exists within the code

– One (1) requirement to change the parameters passed to an executable device ~
should be a trivial modification

– One (1) requirement to instruct the framework when to instantiate an SCA 2.2.2
application ~ should be a trivial modification because the CF implementation
already knows how to extract and process information from the domain profile

31

Requirements Development Scope –

Ported Application Factory

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

SCA 2.2.2 DeviceManager Migration

32

SCA 2.2.2 device managers (DeviceManagerComponents) realize the DeviceManager interface
DeviceManager inherits the SCA 2.2.2 PortSupplier and PropertySet interfaces

registerDevice(in registeringDevice : Device) : void

unregisterDevice(in registeredDevice : Device) : void

shutdown() : void

registerServce(in registeringService : object(idl), in name : string(idl)) : void

unregisterService(in unregisteringService : object(idl), in name : string(idl)) : void

getComponentImplementationId(in componentInstantiationId : string(idl)) : string(idl)

«readonly» deviceConfigurationProfile : string(idl)

«readonly» fileSys : FileSystem

«readonly» identifier : string(idl)

«readonly» label : string(idl)

«readonly» registeredDevices : DeviceSequence

«readonly» registeredServices : ServiceSequence

«CORBAInterface»

DeviceManager

getPort(in name : string(idl)) : object(idl)

«CORBAInterface»

PortSupplier

configure(in configProperties : Properties) : void

query(inout configProperties : Properties) : void

«CORBAInterface»

PropertySet

«inherits» «inherits»

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
33

SCA 4.1 DeviceManagerComponent

• The DeviceManager interface has been removed, the developer has the responsibility of defining an
interface which when realized identifies the provided functionality

• The DeviceManagerComponent has an associated component registry (devices and services deployed
by the DeviceManagerComponent register with the registry)

• A DeviceManagerComponent inherits the interfaces and semantics of a BaseComponent and
consequently can be managed as such

• A developer could define the following SCA 4.1 compliant interface which provides the capability for
an external client to interrogate the platform components that it deployed:

̶ interface myDeviceManager : CF::DeploymentAttributes, ComponentIdentifier

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
34

DeviceManager Attribute Differences

interface DeviceManager : PropertySet, PortSupplier {

 struct ServiceType {

 Object serviceObject;

 string serviceName;

 };

 typedef sequence <ServiceType> ServiceSequence;

 readonly attribute string deviceConfigurationProfile;

 readonly attribute CF::FileSystem fileSys;

 readonly attribute string identifier;

 readonly attribute string label;

 readonly attribute CF::DeviceSequence

 registeredDevices;

 readonly attribute CF::DeviceManager::ServiceSequence

 registeredServices;

};

interface ComponentIdentifier {

 readonly attribute string identifier;

 };

interface DeploymentAttributes {

 readonly attribute CF::Components

deployedComponents;

 };

1 - SCA 4.1 removes the DeviceManager interface
2 - SCA 4.1 moves attributes within the ComponentType structure
3 - SCA 4.1 eliminates attributes
3, 4 - SCA 4.1 relocates attributes to different interfaces

SCA 2.2.2 SCA 4.1

1

2

3

3

3

4

4

4

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
35

DeviceManager Operation Differences

interface DeviceManager : PropertySet, PortSupplier {

 void registerDevice (

 in CF::Device registeringDevice

) raises (CF::InvalidObjectReference);

 void unregisterDevice (

 in CF::Device registeredDevice

) raises (CF::InvalidObjectReference);

 void shutdown ();

 void registerService (

 in Object registeringService,

 in string name

) raises (CF::InvalidObjectReference);

 void unregisterService (

 in Object unregisteringService,

 in string name

) raises (CF::InvalidObjectReference);

 string getComponentImplementationId (

 in string componentInstantiationId

);

};

interface ReleasableManager {

 void shutdown ();

 };

1 - SCA 4.1 relocates the shutdown operation within the ReleasableManager interface
2 - SCA 4.1 abstracts the registerService and registerDevice operations to registerComponent
2 - SCA 4.1 removes registration operations from the device manager to a separate registry
3 - SCA 4.1 removes getComponentImplementationId, properties are held within the component

SCA 2.2.2 SCA 4.1

1

1

2

2

2

2

3

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
36

BaseComponent Differences

interface LifeCycle { };

interface ControllableInterface { };

interface TestableInterface { };

1 - SCA 4.1 optionally supports the BaseComponent interfaces

SCA 2.2.2 SCA 4.1

1

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

• Both SCA 2.2.2 and 4.1 device managers support

the same basic capabilities

– Device and Service deployment

– Node management

• There is a distinct difference in the number of

allocated requirements

– SCA 2.2.2 56 requirements

– SCA 4.1 91 requirements, however once the structural

and modeling oriented requirements are removed there

are 70 effective requirements

37

SCA Device Manager Requirements

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

• Many of the 33 new requirements introduced within

SCA 4.1 would not need to implemented in a

migration from SCA 2.2.2

– 25 requirements are a byproduct of BaseComponent

inheritance

• Consequently, there are eight (8) new

requirements which need to be implemented

38

SCA 4.1 New Device Manager

Requirements

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

• SCA 4.1 introduces eight (8) requirements that are

distinct from the SCA 2.2.2 baseline

– Two (2) requirements are text clarifications ~ minimal if

any change

– Four (4) requirements associated with support for the

PlatformComponentFactory ~ medium change

– One (1) requirement associated with saving component

allocation properties ~ minimal change

– One (1) requirement associated with a new exception

case ~ minimal change

39

Development Scope – Ported Device

Manager

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

SCA 2.2.2 DomainManager Migration

40

SCA 2.2.2 domain managers (DomainManagerComponents) realize the DomainManager interface
DomainManager inherits the SCA 2.2.2 PropertySet interface

registerDevice(in registeringDevice : Device, in registeredDeviceMgr : DeviceManager) : void

registerDeviceManager(in deviceMgr : DeviceManager) : void

unregisterDevice(in unregisteringDevice : Device) : void

unregisterDeviceManager(in deviceMgr : DeviceManager) : void

installApplication(in profileFileName : string(idl)) : void

uninstallApplication(in applicationId : string(idl)) : void

registerService(in registeringService : object(idl), in registeredDeviceMgr : DeviceManager, in name : string(idl)) : void

unregisterService(in unregisteringService : object(idl), in name : string(idl)) : void

registerWithEventChannel(in registeringObject : object(idl), in registeringId : string(idl), in eventChannelName : string(idl)) : void

unregisterFromEventChannel(in unregisteringId : string(idl), in eventChannelName : string(idl)) : void

«readonly» identifier : string(idl)

«readonly» deviceManagers : DeviceManagerSequence

«readonly» applications : ApplicationSequence

«readonly» applicationFactories : ApplicationFactorySequence

«readonly» fileMgr : FileManager

«readonly» domainManagerProfile : string(idl)

«CORBAInterface»

DomainManager

configure(in configProperties : Properties) : void

query(inout configProperties : Properties) : void

«CORBAInterface»

PropertySet

«inherits»

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
41

SCA 4.1 DomainManagerComponent

• The developer has the responsibility of defining an interface which when realized identifies the
provided functionality

• The DomainManagerComponent has an associated registry with which its managed components
register

• A DomainManagerComponent inherits the interfaces and semantics of a BaseComponent and can be
managed as such

• A developer could define the following SCA 4.1 compliant interface which provides the capability for
the domain manager to install applications:

̶ interface myDomainManager : CF::DomainManager, CF::DomainInstallation

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
42

DomainManager Type and Exception

Differences

42

interface DomainManager : PropertySet {
 exception ApplicationInstallationError {
 CF::ErrorNumberType errorNumber;
 string msg; };
 exception ApplicationAlreadyInstalled { };
 exception InvalidIdentifier { };
 exception DeviceManagerNotRegistered { };
 exception ApplicationUninstallationError {
 CF::ErrorNumberType errorNumber;
 string msg; };
 exception RegisterError {
 CF::ErrorNumberType errorNumber;
 string msg; };
 exception UnregisterError {
 CF::ErrorNumberType errorNumber;
 string msg; };
 exception AlreadyConnected { };
 exception InvalidEventChannelName { };
 exception NotConnected { };

 typedef sequence <Application> ApplicationSequence;
 typedef sequence <ApplicationFactory>
ApplicationFactorySequence;
 typedef sequence <DeviceManager>
DeviceManagerSequence;
 };

1 - SCA 4.1 preserves the DomainManager interface and introduces two new interfaces
2 - SCA 4.1 relocates exceptions to newly introduced interfaces
3 - SCA 4.1 removes specialized type definitions
4 - SCA 4.1 relocates (un)registration exceptions to component registry (not shown in IDL)

SCA 2.2.2 SCA 4.1
interface DomainInstallation {

exception ApplicationInstallationError {

 CF::ErrorNumberType errorNumber;

 string msg; };

exception ApplicationAlreadyInstalled { };

exception InvalidIdentifier { };

exception ApplicationUninstallationError {

 CF::ErrorNumberType errorNumber;

 string msg; };

};

interface EventChannelRegistry {

exception AlreadyConnected { };

exception InvalidEventChannelName { };

exception NotConnected { };

 };

1

1

1

2

2

2

2

2

2

2

3

4

4

4

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
43

DomainManager Attribute Differences

readonly attribute string domainManagerProfile;

readonly attribute

CF::DomainManager::DeviceManagerSequence

deviceManagers;

readonly attribute CF::DomainManager::ApplicationSequence

applications;

readonly attribute

CF::DomainManager::ApplicationFactorySequence

 applicationFactories;

readonly attribute CF::FileManager fileMgr;

readonly attribute string identifier;

1 - SCA 4.1 uses common type definition for managed elements
2 - SCA 4.1 moves attributes within the ComponentType structure
2 - SCA 4.1 relocates attributes to interfaces

SCA 2.2.2 SCA 4.1

interface DomainManager : ComponentIdentifier {

readonly attribute string domainManagerProfile;

readonly attribute CF::Components managers;

readonly attribute CF::Components applications;

readonly attribute CF::Components applicationFactories;

readonly attribute CF::FileManager fileMgr;

};

1

1

1
1

2

2

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
44

DomainManager Registration Operation

Differences

 void registerDevice (

 in CF::Device registeringDevice,

 in CF::DeviceManager registeredDeviceMgr)

 raises (CF::InvalidObjectReference,CF::InvalidProfile,

CF::DomainManager::DeviceManagerNotRegistered,

 CF::DomainManager::RegisterError);

void unregisterDevice (

 in CF::Device unregisteringDevice)

 raises (CF::InvalidObjectReference,

 CF::DomainManager::UnregisterError);

void registerService (

 in Object registeringService,

 in CF::DeviceManager registeredDeviceMgr,

 in string name)

 raises (CF::InvalidObjectReference,

 CF::DomainManager::DeviceManagerNotRegistered,

 CF::DomainManager::RegisterError);

void unregisterService (

 in Object unregisteringService,

 in string name)

 raises (CF::InvalidObjectReference,

 CF::DomainManager::UnregisterError);

 void registerDeviceManager (

 in CF::DeviceManager deviceMgr)

 raises (CF::InvalidObjectReference,CF::InvalidProfile,

 CF::DomainManager::RegisterError);

 void unregisterDeviceManager (

 in CF::DeviceManager deviceMgr)

 raises (CF::InvalidObjectReference,

 CF::DomainManager::UnregisterError);

1 - SCA 4.1 removes (un)registration operations from the domain manager to a separate component registry

SCA 2.2.2 SCA 4.1 1

1

1

1

1

1

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
45

DomainManager Operation Differences

void installApplication (

 in string profileFileName)

 raises (CF::InvalidProfile,CF::InvalidFileName,

 CF::DomainManager::ApplicationInstallationError,

 CF::DomainManager:: ApplicationAlreadyInstalled);

void uninstallApplication (

 in string applicationId)

 raises (CF::DomainManager::InvalidIdentifier,

 CF::DomainManager::ApplicationUninstallationError);

void registerWithEventChannel (

 in Object registeringObject,

 in string registeringId,

 in string eventChannelName)

 raises (CF::InvalidObjectReference,

 CF::DomainManager::InvalidEventChannelName,

 CF::DomainManager::AlreadyConnected);

void unregisterFromEventChannel (

 in string unregisteringId,

 in string eventChannelName)

 raises

 (CF::DomainManager::InvalidEventChannelName,

 CF::DomainManager::NotConnected);

 };

1 - SCA 4.1 relocates operations to new decomposed interfaces
2 - SCA 4.1 modifies operation return value type

SCA 2.2.2 SCA 4.1 interface DomainInstallation {

CF::ComponentType installApplication (

 in string profileFileName)

 raises (CF::InvalidProfile,

 CF::InvalidFileName,

 CF::DomainInstallation::ApplicationInstallationError,

 CF::DomainInstallation::ApplicationAlreadyInstalled);

void uninstallApplication (

 in string identifier)

 raises (CF::DomainInstallation::InvalidIdentifier,

 CF::DomainInstallation::ApplicationUninstallationError);

};

interface EventChannelRegistry {

void registerWithEventChannel (

 in Object registeringObject,

 in string registeringId,

 in string eventChannelName)

 raises (CF::InvalidObjectReference,

CF::EventChannelRegistry::InvalidEventChannelName,

 CF::EventChannelRegistry::AlreadyConnected);

void unregisterFromEventChannel (

 in string unregisteringId,

 in string eventChannelName) raises

 (CF::EventChannelRegistry::InvalidEventChannelName,

 CF::EventChannelRegistry::NotConnected);

};

1

1

1

1

1

1

2 2

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)
46

BaseComponent Differences

interface LifeCycle { };

interface ControllableInterface { };

interface TestableInterface { };

1 - SCA 4.1 optionally supports all BaseComponent interfaces

SCA 2.2.2 SCA 4.1

1

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

• Both SCA 2.2.2 and 4.1 domain managers support
the same basic capabilities

– Application installation

– Component registration and unregistration

– Management of applications, application factories and
device managers within the domain

– Event channel registration for external consumers

• There is a marked difference in the number of
allocated requirements

– SCA 2.2.2 130 requirements

– SCA 4.1 124 requirements, however once the structural
and modeling oriented requirements are removed there
are 112 effective requirements

47

SCA Domain Manager Requirements

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

• Many of the 35 new requirements introduced within

SCA 4.1 would not need to implemented in a

migration from SCA 2.2.2

– 26 requirements are a byproduct of BaseComponent

inheritance

• Consequently, there are nine (9) new requirements

which need to be implemented

48

SCA 4.1 New Domain Manager

Requirements

DISTRIBUTION STATEMENT A. Approved for public release: Distribution is unlimited (26 August 2016)

• SCA 4.1 introduces nine (9) requirements that are
distinct from the SCA 2.2.2 baseline
– One (1) requirement resulting from establishing the domain

manager as a releaser of last resort ~ minimal change, should
reuse other releaseObject logic

– One (1) requirement associated with the installApplication
operation returning a ComponentType structure ~ minimal
change that will incorporated most of the information modified
by the interface changes

– Six (6) requirements associated with component registration ~
minimal impact registration moved to a component registry
rather than being within the DomainManagerComponent

– One (1) requirement associated with backwards compatibility ~
minimal change to throw an exception when 2.2.2 applications
are not handled

49

Development Scope – Ported Domain

Manager

