
SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

i

SOFTWARE COMMUNICATIONS ARCHITECTURE

SPECIFICATION 4.0

USER'S GUIDE

07 November 2012

Version: 1.0

Prepared by:

Joint Tactical Networking Center

33000 Nixie Way

San Diego, CA 92147-5110

Statement A - Approved for public release; distribution is unlimited (07 November 2012)

 Notice: This document should be

considered draft. JTNC is soliciting

feedback and review from community,

especially in regards to sections 3.22.2

and 3.23. Comments and suggestions

may be emailed directly to:

jtrs-sca@spawar.navy.mil

mailto:jtrs-sca@spawar.navy.mil

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

ii

REVISION SUMMARY

Version Revision

0.3 Initial Release

1.0 SCA 4.0 Release

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

iii

TABLE OF CONTENTS

1 SCOPE .. 9

1.1 Informative References .. 9

2 SCA INTRODUCTION .. 10

2.1 Separation of Waveform and Operating Environment ... 10

2.2 Operating Environment ... 10

2.2.1 Application Environment Profiles .. 10

2.2.2 Middleware and Data Transfer ... 11

2.3 JTRS Application Program Interfaces ... 11

3 TOPIC ORIENTED GUIDANCE AND SUPPLEMENTARY INFORMATION 13

3.1 CORBA profiles .. 13

3.1.1 Guidance on the use of Any .. 13

3.1.1.1 Rationale for restrictions on the use of Any .. 13

3.1.2 Guidance on the availability of commercial ORBs implementing these profiles 13

3.1.3 Use Case for the Lightweight profile .. 13

3.1.4 Guidance on restriction interface data types ... 15

3.1.5 Rationale for CORBA feature inclusion in the profiles .. 15

3.2 Push model ... 15

3.2.1 Overview ... 15

3.2.2 External framework management ... 17

3.2.3 Registered and obtainable provides ports ... 18

3.2.3.1 Registered provides ports ... 18

3.2.3.2 Obtainable provides ports .. 19

3.3 Enhanced Application Connectivity .. 20

3.3.1 Background ... 20

3.4 Nested applications ... 21

3.4.1 Use cases for nested applications .. 21

3.4.2 How nested applications work in the SCA 4.0 ... 23

3.4.2.1 ApplicationFactoryComponent support for nested applications 23

3.4.2.2 ApplicationManagerComponent support for nested applications 25

3.5 Application Interconnection .. 25

3.5.1 Overview ... 25

3.5.2 Use case for interconnecting applications .. 26

3.5.3 Application interconnection design .. 26

3.5.4 Application interconnection implementation .. 27

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

iv

3.5.5 ApplicationFactoryComponent support for interconnected applications 28

3.6 Enhanced allocation property support ... 29

3.6.1 Overview ... 29

3.6.2 Descriptor structure for nested applications ... 30

3.6.3 Enhanced Allocation Properties in SCA 4.0 ... 30

3.6.4 Dependency Hierarchies in SCA 4.0 .. 31

3.7 SCA Waveform Construction .. 34

3.7.1 Overview ... 34

3.7.2 FM3TR waveform example .. 34

3.8 Resource and Device Interface Decomposition .. 36

3.8.1 Overview ... 36

3.8.2 Resource Related Modifications ... 37

3.8.2.1 Resource interface changes .. 37

3.8.2.2 ComponentFactory Interface Changes .. 39

3.8.3 Device Related Modifications .. 39

3.8.3.1 Device and LoadableDevice interface changes ... 39

3.8.3.2 ExecutableDevice Interface Changes ... 41

3.8.4 Summary ... 42

3.9 Refactored CF Control and Registration Interfaces ... 42

3.9.1 Overview ... 42

3.9.2 DeviceManager Interface Changes ... 43

3.9.3 DomainManager interface changes .. 45

3.9.4 Application Interface Changes .. 47

3.9.5 ApplicationFactory Interface Changes ... 48

3.9.6 Summary ... 49

3.10 Static Deployment ... 49

3.10.1 Overview ... 49

3.10.2 Deployment Background .. 50

3.10.3 Connection Management .. 50

3.10.4 Example .. 51

3.11 Lightweight Components ... 51

3.11.1 Overview ... 51

3.11.2 Benefits ... 52

3.11.3 Alternative Solutions .. 53

3.11.4 Implementation Considerations .. 56

3.12 SCA Next Development Responsibilities .. 56

3.12.1 Overview ... 56

3.12.2 Component Development Alignment ... 56

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

v

3.12.3 Component Products ... 57

3.13 Component Model ... 58

3.13.1 Overview ... 58

3.13.2 Interfaces and Components ... 59

3.13.3 Benefits and Implications ... 60

3.14 SCA Maintanence Process – How To Develop a New PSM? .. 62

3.14.1 Overview ... 62

3.14.2 SCA Change Proposal Process – Submitter Roles ... 62

3.15 Units of Functionality and SCA Profiles ... 63

3.15.1 Overview ... 63

3.15.2 SCA UOFs and Profiles .. 64

3.15.3 Use of UOFs and Profiles ... 64

3.16 What elements of OMG IDL are allowed in the PIM? ... 66

3.16.1 Overview ... 66

3.16.2 PIM Background ... 66

3.16.3 PIM usage for SCA developers .. 66

3.16.4 Future PIM evolution .. 66

3.17 What is the Impact of the SCA 4.0 Port changes? ... 66

3.17.1 Overview ... 66

3.17.2 Port Revisions ... 67

3.17.3 Interface and Implementation Differences ... 67

3.17.4 Implementation Implications .. 68

3.18 Rationale for DeviceManagerComponent Registration .. 69

3.19 Rationale for Removal of Application Release Requirement ... 69

3.20 How to Find and Use Domain Registry References ... 70

3.20.1 Overview ... 70

3.20.2 PlatformComponent registration approaches .. 71

3.20.3 Implementation approach ... 71

3.21 Legacy Support Via V222_COMPAT Directive .. 72

3.22 Component Life Cycle .. 72

3.22.1 Overview ... 72

3.22.2 ComponentBase State Model <Requesting Additional Input> ... 72

3.23 Configuration Properties <Requesting Additional Input> ... 73

3.24 Bypass .. 73

3.24.1 Overview ... 73

3.24.2 Definitions .. 74

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

vi

4 ACRONYMS .. 76

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

7

Figure 1 Example Radio Powered by SCA 4.0 .. 10

Figure 2 JTR Set and Waveform Interfaces .. 12

Figure 3 Lightweight Component in Lightweight profile .. 14

Figure 4 Component distributed across multiple processing elements ... 14

Figure 5 Distributed component with FPGA portion ... 15

Figure 6 Pull model registration ... 16

Figure 7 Push model registration .. 17

Figure 8 External framework management .. 18

Figure 9 Registered port management .. 19

Figure 10 Obtainable port management .. 19

Figure 11 Port lifecycles ... 20

Figure 12 Simple nested application ... 22

Figure 13 Security domain divided application .. 23

Figure 14 Inter-application connections ... 27

Figure 15 Connectivity specific example ... 28

Figure 16 Inter-application connections with external ports .. 29

Figure 17 Dependency Hierarchy ... 32

Figure 18 Dependency Hierarchy and Sub-Applications ... 33

Figure 19 Allocation property examples .. 33

Figure 20 Example FM3TR SCA Waveform Design ... 35

Figure 21 Example Deployment of FM3TR ... 36

Figure 22 ExecutableDevice Interface Inheritance Relationship ... 37

Figure 23 Resource Interface Refactoring .. 38

Figure 24 Resource Interface Optional Interfaces .. 38

Figure 25 ResourceFactory Interface Refactoring .. 39

Figure 26 Device Interface Inheritance Refactoring ... 40

Figure 27 Device Interface Refactoring .. 40

Figure 28 LoadableDevice Interface Refactoring ... 41

Figure 29 ExecutableDevice Interface Refactoring .. 42

Figure 30 DeviceManager Interface Refactoring – registration operations 43

Figure 31 DeviceManager Interface Refactoring – attributes .. 44

Figure 32 DeviceManager Interface Refactoring – miscellaneous operations 45

Figure 33 DomainManager Interface Refactoring – registration operations 46

Figure 34 DomainManager Interface Refactoring – manager registration operations 47

Figure 35 DomainManager Interface Refactoring – installation operations 47

Figure 36 Application Interface Refactoring .. 48

Figure 37 ApplicationFactory Interface Refactoring .. 49

Figure 38 ApplicationFactory Role in Component Deployment .. 50

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

8

Figure 39 Resource Interface Optional Inheritance .. 52

Figure 40 Component Optional Realization ... 53

Figure 41 Optional Realization Issues .. 53

Figure 42 Component Optional Inheritance ... 54

Figure 43 Lightweight Components within an Address Space ... 55

Figure 44 Successful Use of Lightweight Components .. 55

Figure 45 General Allocation of Components to Radio Developers .. 57

Figure 46 SCA Component Relationships .. 59

Figure 47 SCA Change Proposal Process ... 62

Figure 48 SCA Profiles with OE Units of Functionality .. 65

Figure 49 Port Interface Refactoring .. 67

Figure 50 Port Implementation Differences ... 68

Figure 51 Sequence Diagram depicting application release behavior .. 70

Figure 52 Resource Interface Features Optional Inheritance ... 71

Figure 53 Resource Interface Features Optional Inheritance ... 72

Figure 54 Component Life Cycle ... 73

Figure 55 Illustration of Bypass Concepts .. 75

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

9

1 SCOPE

This User‘s Guide is intended to provide practical guidance and suggestions for developing

Software Communications Architecture (SCA) compliant products. It is not a substitute for the

SCA specification, but a companion document to provide implementation guidance and design

rationale outside the structure of a formal specification. This document will expand in content and

detail as SCA user experiences accumulate.

1.1 INFORMATIVE REFERENCES

The following is a list of documents referenced within this specification or used as reference or

guidance material in its development.

[1] Software Communications Architecture Specification Appendix B: SCA Application

Environment Profiles, Version 4.0, 28 February 2012

[2] Common Object Request Broker Architecture (CORBA) Specification, Part 1: CORBA

Interfaces, Version 3.2 formal/2011-11-01, November 2011.

[3] Common Object Request Broker Architecture (CORBA) for embedded Specification,

Version 1.0 formal/2008-11-06, November 2008.

[4] Software Communications Architecture Specification Appendix E-1 - Attachment 1: SCA

CORBA Profiles (from CORBA/e), Version 4.0, 28 February 2012

[5] Software Communications Architecture Specification Appendix D - Platform Specific

Model (PSM) - Domain Profile Descriptor Files, Version 4.0, 28 February 2012

[6] Software Communications Architecture Specification Appendix F - Units of Functionality

and Profiles, Version 4.0, 28 February 2012

[7] UML
TM

 Profile for CORBA
TM

 Specification, Version 1.0 formal/2002-04-01, April 2002.

[8] Software Communications Architecture Specification Appendix E-3: Platform Specific

Model (PSM) - Object Management Group Interface Definition Language, Version 4.0, 28

February 2012

[9] Donald R. Stephens, Cinly Magsombol, Chalena Jimenez, "Design patterns of the JTRS

infrastructure", MILCOM 2007 - IEEE Military Communications Conference, no. 1,

October 2007, pp. 835-839

[10] Cinly Magsombol, Chalena Jimenez, Donald R. Stephens, "Joint tactical radio system—

Application programming interfaces", MILCOM 2007 - IEEE Military Communications

Conference, no. 1, October 2007, pp. 855-861

[11] Donald R. Stephens, Rich Anderson, Chalena Jimenez, Lane Anderson, "Joint tactical radio

system—Waveform porting", MILCOM 2008 - IEEE Military Communications

Conference, vol. 27, no. 1, November 2008, pp. 2629-2635

[12] JTRS Waveform Portability Guidelines,

http://jpeojtrs.mil/sca/Pages/portabilityguidelines.aspx

[13] JTRS Open Source Information Repository, http://gforge.calit2.net/gf/project/jtrs_open_ir/

http://jpeojtrs.mil/sca/Pages/portabilityguidelines.aspx
http://gforge.calit2.net/gf/project/jtrs_open_ir/

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

10

2 SCA INTRODUCTION

2.1 SEPARATION OF WAVEFORM AND OPERATING ENVIRONMENT

A fundamental feature of the SCA is the separation of waveforms from the radio‘s operating

environment. Waveform portability is enhanced by establishing a standardized host environment

for waveforms, regardless of other radio characteristics. An example diagram of an SCA-based

radio is illustrated in Figure 1. The waveform software is isolated from specific radio hardware or

implementations by standardized APIs.

Figure 1 Example Radio Powered by SCA 4.0

2.2 OPERATING ENVIRONMENT

2.2.1 Application Environment Profiles

To promote waveform portability among the many different choices of operating systems, the SCA

specifies the operating system functionality relative to IEEE POSIX options and units of

functionality. The Application Environment Profiles (AEP) specification, reference [1], identifies

specific operations such as pthread_create(), open(), etc., that are available for use by

ApplicationResourceComponents and must be provided by the radio platform. A platform

developer may provide additional operating system functions, but the waveforms can only access

the functions defined in the AEP. This assures any SCA compliant radio can execute the

waveform.

SCA defines two profiles, AEP and Lightweight (LwAEP), that may be used across a range of

radio sets ranging from a small handheld to a multichannel radio embedded within an aircraft. The

LwAEP is a subset of the AEP and intended for very constrained processors such as DSPs that

typically do not support more capable real-time operating systems.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

11

Some waveforms may require networking functions such as socket() or bind(). If a radio platform

is going to host waveforms that utilize those operations, it must support the Networking

Functionality AEP as an extension to the primary AEP profile. Reference [4] provides additional

information related to networking.

2.2.2 Middleware and Data Transfer

In Figure 1, the radio platform provides middleware and data/messaging transport in addition to the

real-time operating system. Middleware is a generalized service which facilitates messaging

between software components, possibly hosted on separate processors. SCA 2.2.2 and its

predecessors mandated CORBA as the middleware layer and deferred the specific transport

mechanism to the radio set developer. Historical data transfer mechanisms have been TCP-IP and

shared memory. The former can introduce substantial latency and perhaps has unfairly tarnished

CORBA‘s reputation within the radio community. A faster transport such as shared memory

generally yields latencies acceptable for high-data rate waveforms.

SCA 4.0 deleted the CORBA requirement and defined middleware independent APIs, although

they are still specified in interface definition language (IDL) (see reference [2]). Radio developers

may continue using CORBA, or select a different middleware such as the lightweight Remote

Procedure Call (RPC) used by the Android platform. Waveforms would require recompilation for

different middleware implementations, but the APIs should remain the same for the most part, thus

maximizing waveform portability.

2.3 JTRS APPLICATION PROGRAM INTERFACES

Figure 1 contains several independent APIs which separate the waveform from the radio set. The

primary emphasis of the JTRS API standardization efforts has been upon interfaces between the

waveform and radio set such as those illustrated in Figure 2. The internal interfaces and transport

mechanisms of the radio are defined as necessary by the radio provider. The underlying intent is to

provide portability or reuse of the waveform between radio platforms and not necessarily

portability of the radio operating environment software. For additional discussion on waveform

portability, see [11] and [12].

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

12

W
a

v
e

fo
rm

 A
p

p
lic

a
ti
o

nHMI

Service

System

Control

Modem

Device

Audio

Device

Modem

Hardware

Audio

Hardware

Standardized

JTR Set APIs

Operator

Control

Set-Specific

Interfaces

Figure 2 JTR Set and Waveform Interfaces

There has been a conscious effort to maintain a clear separation between the SCA and the JTRS

APIs which define services provided by the radio set to the waveform such as GPS, time, etc. The

distinction not only maintains the integrity of SCA framework and preserves its applicability across

a wide range of domains, but also allows the content of each family of specifications to evolve

according to its own timetable. A partial list of the JTRS APIs is provided in Table 1. The APIs

have been developed with software design patterns to define a scalable and extensible

infrastructure. See [9] and [10] for an introduction to the aggregation, least privilege, extension,

explicit enumeration, and deprecation design patterns for JTRS APIs.

Table 1 Partial List of JTRS APIs

Audio Port Device API Ethernet Device API

Frequency Reference Device API GPS Device API

Modem Hardware Abstraction Layer (MHAL) API Serial Port Device API

Timing Service API Vocoder Service API

MHAL On Chip Bus (MOCB) API Packet API

JTRS Platform Adapter (JPA) API

The JTRS Platform Adapter (JPA) identified in Table 1 is both an API and a design pattern for

controlling the waveform by the radio set. (It is a particularly vexing problem, to define a portable

command/control interface for waveforms across multiple radio sets.) This API uses the SCA

PropertySet interface as a container for waveform parameters controlled and manipulated by the

radio set. It also supports bidirectional communication, permitting the waveform to provide status

to the radio set.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

13

3 TOPIC ORIENTED GUIDANCE AND SUPPLEMENTARY

INFORMATION

3.1 CORBA PROFILES

3.1.1 Guidance on the use of Any

On systems with limited resources, the use of the OMG IDL Any data type should be minimized.

The Any data type should not be used within the data path or in situations with demanding

performance requirements. When an Any type must be used, it should be associated with a simple

type. The CF::Properties data type is the SCA location that contains an Any data type within its

data structure definition.

3.1.1.1 Rationale for restrictions on the use of Any

The Any data type should be avoided due to the significant performance and resource consumption

implications that it levies on the method calls that use them. Many ORB providers supply insertion

and extraction operations for known simple types and transport them without large TypeCodes that

can add significantly to message sizes (in some cases the type information can more than double

the size of the messages). The potential size implications are even greater for complex types, the

CORBA compiler must generate code for insertion and extraction and add it to each component

using the interface as well as adding the type information to each message.

The additional size and processing complexity associated with marshaling and unmarshalling

utilizes resources that could be better directed towards providing application critical capabilities.

It is not necessary to find an ORB that does not support complex types in Any, or to try to remove

the capability from a commercial product because most of the resource savings is achieved not

from absence of the capability, but because the Application did not use that capability. However,

for user defined IDL types the Any capability is only turned on when the operator is generated by

the IDL compiler and used by the code. Some ORBs have the ability to optimize for size by only

including the Any capability when it is linked with the application through the use of a modular

architecture.

3.1.2 Guidance on the availability of commercial ORBs implementing these profiles

Initially there may be few, if any, commercial ORBs available that provide an implementation

tailored in accordance with the SCA specified profiles. With few noted exceptions, the Full and

Lightweight CORBA profiles are proper subsets of the CORBA/e Compact profile (see reference

[3]). This means that a processing element with sufficient resources could use a CORBA/e

Compact ORB and support nearly all permitted Application features and require minimal porting

effort.

3.1.3 Use Case for the Lightweight profile

The Lightweight profile is intended for extremely limited processing elements, such as most DSPs,

and assumes an approach for implementing SCA components (Resource or Device) that strives to

maximize performance and minimize resource utilization. In order to avoid resource intensive

features of the SCA for component management, such as the Resource interface and its inherited

PropertySet interface, the Lightweight profile accommodates partially realized SCA components,

Figure 3, or scenarios where the complete SCA component implementation is split between an

extremely limited and a somewhat less limited processing element.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

14

Processing Element MHAL Computational Element MHAL Computational ElementProcessing Element

GPP 1 DSP 1 FPGA 1

Platform -
Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport

Platform Specific

Transport Platform -
Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport

Platform Specific

Transport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport

Platform Specific

Transport

<<ARC>>

C

<<ARC>>

D
<<ARC>>

 B

Processing Element Processing Element

<< ARC>>

F

ARC = ApplicationResourceComponent

Component D is CONTROLLABLE/INTERROGABLE

Figure 3 Lightweight Component in Lightweight profile

It is assumed that the component management functions, including the Resource interface are

realized on the less limited processing element and only port implementations (such as traffic data

handling) are realized on the limited processor, Figure 4.

Processing Element MHAL Computational Element MHAL Computational ElementProcessing Element

GPP 1 DSP 1 FPGA 1

Platform -
Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport

Platform Specific

Transport Platform -
Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport

Platform Specific

Transport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport

Platform Specific

Transport

:C
<<ARC>>

D
<<ARC>>

 B

Processing Element Processing Element

<< ARC>>

F

ARC = ApplicationResourceComponent

Component C contains the realization of a Component B provides port

CORBA

connectivity

Figure 4 Component distributed across multiple processing elements

An alternative approach for applications is for an AssemblyControllerComponent to manage a

component directly, not using a Resource interface port. In that scenario the permitted data types

and method calls are restricted to those necessary for the port implementations. Note that some

current standard APIs such as, Audio Port Device and GPS Device would need to be modified to

follow these constraints. Coordination between the lightweight and management portions of a

component is outside the scope of this recommendation and not required to use CORBA.

Components may need to be deployed on even more limited processors such as FPGAs or have

interfaces to other components on such processors, Figure 5.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

15

Processing Element MHAL Computational Element MHAL Computational ElementProcessing Element

GPP 1 DSP 1 FPGA 1

Platform -
Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport

Platform Specific

Transport Platform -
Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport

Platform Specific

Transport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport
Platform -

Specifi

cTransport

Platform Specific

Transport

<<ARC>>

C

<<ARC>>

D
<<ARC>>

 B

Processing Element Processing Element

:F

ARC = ApplicationResourceComponent

Component F contains the realization of a Component B provides port

Component F also has additional restrictions on it’s data types

CORBA

connectivity

Figure 5 Distributed component with FPGA portion

Compatibility will be enhanced in these instances if data types are restricted to those realizable on

such processors. Therefore, components implementing the lightweight profile are encouraged to

avoid using the data types discouraged in the Permitted Data Types Section and marked with * in

the table of Attachment 1 to Appendix E-1 (see reference [4]).

3.1.4 Guidance on restriction interface data types

It is recommended that data types be restricted in any interface to modules implemented on

extremely limited processing elements such as FPGAs and most DSPs.

 Interfaces to code modules implemented on extremely limited processing elements, such as

FPGAs and most DSPs, whether or not they are implemented in CORBA, are encouraged to refrain

from using the data types marked with * in the Lightweight CORBA profile.

This recommendation is intended to enhance portability of CORBA to non-CORBA

implementations and to ensure that data can be exchanged easily between CORBA and non-

CORBA components.

3.1.5 Rationale for CORBA feature inclusion in the profiles

The choice to include CORBA features in the profiles was driven by use cases. Some of these use

cases are listed along with columns comparing Full with minimumCORBA and CORBA/e

Compact in Attachment 1 to Appendix E-1 (see reference [4]).

3.2 PUSH MODEL

3.2.1 Overview

Prior versions of the SCA have been ―pull model‖ oriented as shown in Figure 6. References are

exchanged, but to get the information that‘s really needed, callbacks need to be made.

For example:

 getPort for pulling uses and provides ports

 Pulling attributes (e.g. deviceID, registeredDevices)

 Pulling Application Components from a Naming Service

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

16

Figure 6 Pull model registration

SCA 4.0 introduces a ―push model‖, Figure 7, architecture that allows for a direct exchange of this

information without callbacks. The primary benefits of this are better assurance and better

performance. Better assurance is achieved by limiting access to pushes only and eliminating the

need for a Naming Service. Better performance comes by reducing the total number of calls

involved. This can reduce startup and instantiation time. It also allows for the call back attributes

and operations to become optional and when not used this can reduce the implementation required.

For example:

 Device ID and Provides Ports can be pushed with the component registration and don‘t

need to pulled later

 Registered components (complete with IDs and Provides Ports) can be pushed with

DeviceManagerComponent registration

 The DCD information can also be pushed instead of pulled by accessing a

DeviceManagerComponent attribute

 Direct registration of application components removes the need for a Naming Service

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

17

Figure 7 Push model registration

3.2.2 External framework management

External Framework Management was also slightly expanded to accommodate a push model.

For example

 The return of installApplication now provides information that previously required separate

pull calls.

However in general the external framework management maintained the ―pull model‖ support of

previous SCA versions.

The rationale for this approach was that it provided a good balance between performance,

capability and compatibility. It provides for greater performance when utilizing the push model for

external management. But continues to support unique use cases where pulls may still be needed.

It also allows for backward compatibility without violating the ―least privilege‖ principle.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

18

Figure 8 External framework management

3.2.3 Registered and obtainable provides ports

In order to implement a ―push model‖ and allow continued support of all prior use cases, the

provides port semantics had to be enriched. SCA 4.0 provides for two types of provides ports,

termed ―Registered‖ and ―Obtainable‖. Sometime these are referred to using names found in

previous versions draft versions ―Static‖ and ―Dynamic‖. To avoid confusion, Registered Provides

ports = Static Provides Ports. Obtainable Provides Ports = Dynamic Provides Ports.

3.2.3.1 Registered provides ports

Registered provides ports are provides ports which have a lifecycle tied to the lifecycle of the

component. Registered ports are registered with the framework during component registration and

the framework will not attempt to retrieve them when making connections. Registered ports are

not explicitly released by the framework except through the component‘s releaseObject operation.

This means a component can expect getProvidesPorts and disconnectPorts to not typically be

called for the provides ports it registered. In some cases, for assurance reasons, a component may

want to explicitly reject calls for these ports (e.g. raise an UnknownPort or InvalidPort exception).

In some cases, a component may want to allow ports that are ―registered‖ to still also be

―obtainable‖. Meaning the ports can be retrieved from getProvidesPorts and then connections to

the ports can be disconnected through disconnectPorts. It is left unspecified to allow the

component developer to customize this behavior to match the needs of the target platform.

However a framework that is built strictly to the specified requirements will not retrieve registered

provides ports through getProvidesPorts and will not disconnect connections to them through

disconnectPorts.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

19

Figure 9 Registered port management

3.2.3.2 Obtainable provides ports

Registered provides ports are provides ports which are meant to have a lifecycle tied to the

lifecycle of a given connection. Obtainable provides ports are not registered with the component

and instead the framework will attempt to retrieve the ports through getProvidesPorts when they‘re

needed to complete connections. Obtainable provides ports are explicitly released by the

Framework via disconnectPorts when the connections to them are torn down. With obtainable

provides ports, by specifying connectionIDs on getProvidesPorts and calling disconnectPorts,

additional use cases and added functionality are supported that is not available within prior SCA

versions.

Figure 10 Obtainable port management

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

20

It is not specified that obtainable provides ports have to be tied to the lifecycle of a given

connection. Several use cases exist where it may have a longer lifecycle:

 A ―backward compatibility‖ use case where a provides port that is still created and released

with the component, but simply not registered, mimicking more of the prior SCA pull-

model behavior

 A ―fan in‖ use case where the same provides port instance is utilized to service multiple

connections, with reference counting used to dictate when it is finally released.

Figure 11 Port lifecycles

3.3 ENHANCED APPLICATION CONNECTIVITY

3.3.1 Background

Prior to the release of SCA 4.0, the SCA only supported the ability to deploy individual, standalone

applications. While multiple applications could be deployed on a platform, the SCA component

framework provided no direct support to interconnect or logically nest these applications. As a

result, the client creating the applications was left to do this manually, using a combination of

external ports and either ―hard coded‖ interconnection or automatic interconnection, using

information gleaned from the application XML.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

21

This approach was very limited, however, and required much of the client. As interconnection was

not automatically controlled by the SCA framework, a number of challenges were encountered, as

follows:

 Added complexity to client code – the client code needs to understand how to query for and

make port connections, and for some implementations also to utilize XML to introspect the

application information.

 Reduced security – in some systems, the ability to make CORBA port connections is

intentionally restricted, and for similar reasons, the ability to obtain the necessary CORBA

object references is restricted.

 Abstraction / Information hiding – in some cases, you may want an application to behave

like a single component, and include such a sub-application within an outer component.

Pre-SCA-4.0 frameworks did not support this manner of abstraction

 Distribution of applications – in some systems (typically those with an overall application

divided across two or more security domains) it is desirable to be able to segment an overall

application into two or more sub-applications, with sub-application creation and connection

occurring locally within the domain with minimal ―bypass‖ traffic crossing domains during

creation. In prior versions of the SCA this ability was unsupported, leading to non-optimal

workarounds.

In SCA 4.0, a set of capabilities has been added to support the needs above. Two topics, ―Nested

application support‖ and ―Application interconnection‖ are addressed in subsequent sections. In

addition, nested applications in some cases additionally benefit from the use of the Enhanced

allocation property support, described in section 3.6.

3.4 NESTED APPLICATIONS

3.4.1 Use cases for nested applications

A simple, monolithic application is still the best solution in many platforms, however several

common situations occur where a hierarchical, nested application presents a better solution.

The first use case comes from the simple need to want to further structure and encapsulate complex

application structure into a hierarchical structure. While prior to SCA 4.0 an application structure

was ―flat‖, simply being made of ―leaf‖ components, this limitation no longer applies in SCA 4.0

and beyond. As a result, complex subassemblies can be formed and abstracted into sub-

applications, with applications then formed using these subassemblies. This architectural technique

can enable a subassembly to be used in different contexts, promoting reuse in common asset

libraries such as are employed in software product lines, etc.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

22

ApplicationManager

<<Application

Resource>>

AppComponent B

<<Assembly Controller>>

SubAssembly C1

<<Application

Resource>>

AppComponent D

<<Application

Resource>>

Component C4

<<Application

Resource>>

Component C3

<<Application

Resource>>

Component C2

<<Assembly Controller>>

AppComponent A

Figure 12 Simple nested application

An example of this structuring is shown in Figure 12. In this example, an overall application is

made up of four top-level components, with one of the components (AppComponent A) also

functioning as the application‘s AssemblyControllerComponent. Component C1 however is not a

simple component created by the normal componentinstantiation in the SAD
1
, but rather a

subapplication created through an assemblyinstantiation. To AppComponentA this nested sub-

application is abstracted to a single CF::Resource interface, but from a creational standpoint the

―upper level‖ ApplicationFactoryComponent constructs a true sub-application per a cited SAD file.

As is discussed later, in this example there is no separate ApplicationManagerComponent produced

to manage the sub-application, rather the management all being done by the upper blue

ApplicationManagerComponent. This is a core framework implementation decision, however. An

equally valid approach would be for the sub-application to be managed by an intermediate

ApplicationManagerComponent, with only the CF::Resource narrowed interface made available to

AppComponent A.

A second compelling use-case arises on platforms which provide encryption in such a way that two

or more security domains are established (e.g. plaintext and ciphertext domains). In some high

assurance environments, these domains are distinct and separated (usually by some sort of

cryptographic subsystem) such that control and configuration communications between the

domains need to be minimized. In such a system, it could be beneficial to structure an application

such that it resembles two or more sub-applications, one in each security domain. A typical

representation of this situation is shown in Figure 13.

1
 Componentplacements are located inside either a componentplacement or hostcollocation element

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

23

CT Sub-applicationPT Sub-application

ApplicationManager

<<Assembly Controller>>

PtComponent 1

<<Application

Resource>>

PtComponent 2

<<Assembly Controller>>

CtComponent 1

<<Application

Resource>>

PtComponent 3

<<Application

Resource>>

CtComponent 4

<<Application

Resource>>

CtComponent 3

<<Application

Resource>>

CtComponent 2

Figure 13 Security domain divided application

In this example, we see a top-level application wholly consisting of two sub-applications, each

deployed in a different security domain
2
. In this example the option of having an Application

ManagerComponent
3
 distribute properties and control to two distinct

AssemblyControllerComponents is also employed. Also note that how this application gets

physically constructed is not fully specified in the SCA – a clever implementation could split the

required CF::ApplicationFactory behavior across the security domains as well (while still

controlling this through a common CF::ApplicationFactory interface, minimizing cross-domain

communications.

3.4.2 How nested applications work in the SCA 4.0

While a significant enhancement, support of nested applications in SCA 4.0 is not immediately

obvious, or described in a dedicated section. Instead, such support is ―enabled‖ through a number

of small changes in scattered requirements. The major areas of change supporting this feature are

listed in Section 3.1.3.3.1 (Application), 3.1.3.3.3 (ApplicationFactory), and in several parts of

Appendix D.

3.4.2.1 ApplicationFactoryComponent support for nested applications

In the big picture, an ApplicationFactoryComponent (as fronted by the ApplicationFactory

interface) provides the means to create, from a client‘s standpoint, a single, top-level application.

This application is created according to the specifications set out in a set of XML files, culminating

in the Software Assembly Descriptor (SAD), which defines how the application is created. These

SAD instructions include which elements are used, how they are deployed, configured, and how

they are connected. In earlier SCA version, elements always referred to individual components,

which were in turn defined by Software Component Descriptors (SCD) and so on.

2
 Not to be confused with an SCA domain – in this system, there is still only one domain manager.

3
 Application ManagerComponents implement the CF::Application interface and responsibilities,

and are created / supplied by the core framework.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

24

In SCA 4.0, support for nested applications was added in the SAD by allowing not only the

creation of components (which could be both ―leaf‖ components and

ComponentFactoryComponents) but also for the creation of assemblies. These assemblies, which

function as sub-applications, are represented in the higher-level SAD file by an assemblyinstantion

element, itself contained within a assemblyplacement element. While the method and order of

events is largely left to the implementation, the post-condition is clear – when the application is

constructed, all components represented by the top-level SAD and those of any child SAD files

cited in assemblyplacements have been created, deployed, interconnected, and

ApplicationManagerComponent (reachable by an Application interface) be returned to the client.

Furthermore, only top-level instantiated applications are listed in the DomainManagerComponent‘s

applications attribute – the presence of any subassemblies is unlisted.

Just as important is what is not specified in SCA 4.0. Though not an inclusive list, the following

implementation choices were intentionally left in SCA 4.0:

 SCA 4.0 does not specify the order of construction or initialization of the components and

subassemblies.

 SCA 4.0 neither requires nor prohibits usage of intermediate

ApplicationManagerComponents to manage any sub-assemblies. Put another way, in some

core frameworks, an implementer could choose to have the top level

ApplicationManagerComponent only manage the top level leaf components and delegate

any direct subassembly management to the ―sub‖ Application ManagerComponent, while in

others, a single top-level ApplicationManagerComponent could be employed which was

responsible for all components.

 SCA 4.0 does not specify details on how the nested applications are installed into the

system. As in earlier versions of the SCA, the DomainManagerComponent‘s

installApplication() operation only lists a top level SAD – the placement of the necessary

files is assumed to have been previously accomplished, and no assumptions on absolute or

relative directory placement is made.

 The nested SAD file is no different from a top-level SAD file. In this way, an

implementation could allow separate installation of the SAD for standalone (―top level‖)

instantiation, while still allowing the application to be used as a sub-application by citing it

from another SAD.

 SCA 4.0, while requiring a single client interface (CF::ApplicationFactory) and compliance

to the requirements of an ApplicationFactoryComponent, does not dictate exactly how the

function of this component is spread across the system. In many systems it will map to a

single component which singlehandedly guides the deployment. However, other compliant

implementations are possible, especially when an application is deployed across processors

or security domains. One example would be where there was a central coordinator which

implements the CF::ApplicationFactory interface, but which delegates some of all of the

creational behavior to subcomponents (which need not implement any specific interface).

This federated deployment in some cases could minimize cross processor or cross domain

communications, speeding up deployment, etc.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

25

3.4.2.2 ApplicationManagerComponent support for nested applications

The ApplicationManagerComponent
4
 has two broad responsibilities, which were expanded with

the introduction of nested applications within SCA 4.0. The first responsibility is to tear down the

application instance that was created by the corresponding ApplicationFactoryComponent, and

from a postcondition standpoint this behavior remains the same in SCA 4.0. When nested

applications are supported in SCA 4.0, the allocation of the teardown responsibilities is

unspecified. One common implementation would be for the top level

ApplicationManagerComponent to only manage top level components, with one of those

―components‖ itself being a distinct ApplicationManagerComponent which manages its

subapplication components. The advantage of this approach is one of symmetry (―each SAD

creates an application and is managed by an ApplicationManagerComponent‖) and greatest

similarity to prior SCA core framework implementations. Other implementations are valid,

however. For example, SCA 4.0 does not require ApplicationManagerComponents to manage the

sub-application components – instead a single, top-level ApplicatoinManagerComponent could be

responsible for teardown of all components (and port disconnection, etc.). This approach in some

cases may be more efficient or centralize the domain data.

ApplicationManagerComponents are also responsible for distributing client calls made through the

CF::Resource interface (which is specialized by the CF::Application interface) to the application.

In versions prior to SCA4.0, distribution was straightforward, as all calls were to be passed to a

single CF::Resource supporting component (not an assembly) that was designated as the

assemblycontroller in the SAD. If the DMD accardinality attribute has a value of ―single‖, the

conventions of only one designated assemblycontroller, which is itself a component, and the

ApplicationManagerComponent responsibilities remain the same.

However in implementations that implement the NestedDeployment UOF and have a DMD

accardinality attribute with a value of ―multiple‖, multiple assemblycontrollers are allowed and

those assemblycontrollers are allowed to refer to an assemblyinstantiation. When this is the case,

the ApplicationManagerComponent is no longer able to blindly forward configure(), query() and

runTest() as it did before. Instead, it must examine each individual property and test, and forward

it to only the appropriate assemblycontrollers based on the information contained in the top level

SAD and derived XML files of the application (which in the nested case would include at least one

additional SAD). Additionally, as multiple properties can be listed in a configure or query call, the

ApplicationManagerComponent may also be required to break up configure and query calls, as

well as potentially combine their results and exception behavior.

3.5 APPLICATION INTERCONNECTION

3.5.1 Overview

An alternative to having a simple, monolithic application would be to have multiple independent

applications that collaborate with one another. The SCA 4.0 application interconnection capability

provides a uniform approach to address the problem of how to establish connections between

framework components modeled as applications. Prior to the introduction of this capability there

were multiple solutions regarding how this problem should be addressed which complicated

4
 Prior to SCA 4.0, there was no formal ApplicationManagerComponent, instead all requirements

were allocated to an unnamed CF component which implemented in the CF::Application interface.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

26

software reuse and portability. The introduction of this capability should alleviate those problems

and ensure that a realization of this approach is available across platforms.

3.5.2 Use case for interconnecting applications

An alternative to having a simple, monolithic application would be to have multiple independent

applications that need to collaborate with one another. A use case which highlights the need for this

capability would be one that would reinforce the separation of concerns and loose coupling of a

well architected system. For example, a radio platform might have an associated android

presentation layer that provided an implementation of a general purpose user interface that could be

used to manage and monitor the system. In this scenario the system could have been designed and

implemented in accordance with the Model, View, Presenter pattern where the applications to be

connected would have be the waveform (Model) and UI intermediary (Presenter).

Earlier SCA versions did not have a means to form these connections. Their SAD contained the

externalports element which by definition provided a means for a component (application or

otherwise) external a waveform to be connected to an application, but no framework construct

existed to establish those connections. Typically the gap was filled by introducing an additional

component within the system that had the responsibility for connection establishment.

3.5.3 Application interconnection design

SCA 4.0 defines a formal mechanism to utilize the externalports element as the conduit through

which the framework is able to manage the formation and destruction of those inter-application

connections. The external port connection construct provides a good solution for this problem

because of the nature of the problem – the two applications that need to be connected have a

dependency on one another for the connection to be created but they are created independently and

there are no guarantees that they will be created together. The connection mechanism needs to

know how to accommodate instances when one side of the connection exists and the other does

not. However, if both sides of the applications are created then the applications are always

connected.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

27

Figure 14 Inter-application connections

3.5.4 Application interconnection implementation

Building upon the earlier scenario, both the waveform and the presentation layer will have their

connections laid out in their respective SAD files. The android presentation layer, application A,

contains a provides port that can be accessed and used by other applications, so it advertises that

port within its externalports element as a providesidentifier. The waveform, application B, wishes

to be connected to the presentation layer‘s external port, so in one of its SAD connections it defines

a connection between its local uses port and the externally provided provides port from A. The

example illustrates that only one of the applications needs to define the connection for it to be

processed by the framework.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

28

Figure 15 Connectivity specific example

3.5.5 ApplicationFactoryComponent support for interconnected applications

The specification introduces a new type, application, to the domainfinder element. The semantics

associated with this type provide instructions to the framework regarding which elements are to be

involved within the connection and how it should be formed. The ApplicationFactoryComponent

retrieves the connection endpoint via the domain‘s domainfinder element. When the application

type is used, no implicit creation behavior is intended, so if one of the application endpoints does

not exist, the framework is not expected to instantiate the missing application. If neither endpoint

can be resolved, then the specification allows for an implementation specific behavior - although

the desired approach would be for the connection to be held in a pending state until it can be made

(note that in this approach either the waveform or the framework will need to have sufficient

safeguards in place to insure that a call to this connection does not result in an unexpected or

uncontrolled termination). An alternative solution would be to prevent the application from being

created, although this seems to as if it would be excessive because the waveform should have been

built such that there was not a critical dependency between the applications.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

29

Figure 16 Inter-application connections with external ports

The domainfinder element allows for multiple connection strategies that the

ApplicationFactoryComponent must be able to accommodate depending on what information is

provided in the domain profile file. When only the application name is specified then any existing

ApplicationManagerComponent in the domain with that name can be used. When both the

application factory name and application name are specified, only the named

ApplicationManagerComponent created by the specified ApplicationFactoryComponent is

returned. When only the application factory name is specified then any

ApplicationManagerComponent created by the specified ApplicationFactoryComponent may be

used.

3.6 ENHANCED ALLOCATION PROPERTY SUPPORT

3.6.1 Overview

Several use cases exist that require the framework to have the ability to constrain the deployment of

application or nested application components. SCA 2.2.2 provided this capability with the

introduction of the SCA Extension and its channel deployment functionality. Those constructs were

not only included with the incorporation of the Extension within SCA 4.0, but comparable

capabilities were also added with the introduction of nested applications. The nested application

SCA 4.0 elements extend the SCA 2.2.2 SCA allocation properties to make them more dynamic

and accessible to nested applications. The new constructs provide users with the ability to deploy

nested applications to different domains as well as most of the other capabilities associate with

traditional allocation properties.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

30

3.6.2 Descriptor structure for nested applications

The SAD file composition was modified in SCA 4.0 to accommodate nested applications. An SCA

4.0 application consists of 0 or more components and 0 or more nested applications. The nested

applications incorporate a new element, applicationinstantiation, which is similar to a

componentinstantiation, although it has different sub-elements.

Nested applications are similar to an ApplicationResourceComponent in that they can receive

properties, deviceassignments and deploymentdependencies. However they differ from those

components in that they cannot be created by a ComponentFactoryComponent. The information in

the applicationinstantiation element is intentionally similar to the ApplicationFactory::create()

call. This similarity permits an implementation to use the ApplicationFactory::create() operation to

create a nested application.

<!ATTLIST componentfile

 id ID #REQUIRED

 type CDATA #IMPLIED>

 <!ELEMENT partitioning

 (componentplacement | hostcollocation

 | assemblyinstantiation)

)+>

 <!ELEMENT assemblyplacement

 (componentfileref

 , assemblyinstantiation+

)>

<!ELEMENT assemblyinstantiation

 (usagename?

 , componentproperties? ,

 , deviceassignments?,

 , deploymentdependencies?

) >

<!ATTLIST assemblyinstantiation

 id ID #REQUIRED>

3.6.3 Enhanced Allocation Properties in SCA 4.0

SCA 2.2.2 allocation properties could only be set in .prf files, and not overridden. Similarly,

dependencies were specified in .spd files, and could not be overridden. This severely limited the

manner in which they may be used.

The SCA deploys components by evaluating dependency requirements against existing component

allocation property definition. As an example a DeviceComponent (or other component) defines an

allocation property in a .prf file as follows:

Type can now be ―software package

descriptor‖ or ―software assembly

descriptor‖

Assemblies may consist of both

components and assemblies (e.g.

SAD). However, assemblies

cannot be inside hostcollocaton

sections and cannot be created

by component factories.

New element, modeled after

componentinstantiation.

Componentproperties (configureproperty type

only), override nested SAD similar to that in

create call. and deviceassignements and

deploymentdependencies act in the same way

as if passed into ApplicationFactory::create().

Nested assemblies can also serve as

assemblycontrollers (via their CF::Resource

/ CF::Application interface)

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

31

<simple id="RadioChannel" type="short" name="RadioChannel">

 <value>0</value>

 <kind kindtype="allocation"/>

 <action type=“eq"/>

</simple>

Then a component to be deployed establishes a dependency against the allocation property by

stating the type of device it requires:

<dependency type="RadioChannelDependency">

 <propertyref refid= "RadioChannel" value="5"/>

</dependency>

If the dependency can be satisfied by one of the component allocation property definitions within

the domain, then that DeviceComponent becomes a usage or deployment candidate.

SCA 4.0 provides the ability to override component allocation properties in the

componentinstantiation section. This allows a system designer to assign different values to

allocation properties on a per-instance basis, e.g. ―the channel 4 instance of the GppDevice gets the

deployedChannel allocation property overridden to 4‖. In prior SCA versions, a system designer

would have had to edit the component‘s .prf file or use the SCA extension .pdd file to accomplish

this. SCA 4.0 also introduces the capability to specify SAD and create() based

deploymentdependencies. The deploymentdependencies element specifies a list of dependencies

which can override SPD defined dependencies (either within deployment or as part of a uses device

connection). The dependency relationship is overridden, not the allocation property, which differs

from other ―property overrides‖. Lastly, a list of deploymentdependencies can be passed into the

ApplicationFactory::create() operation to allow client-controlled dependencies (e.g. radio channel)

to be specified.

3.6.4 Dependency Hierarchies in SCA 4.0

SPDs define the dependencies for a particular component type unless overridden, these apply to all

instances of the component.

As shown in Figure 17, SAD componentinstantiations can optionally override a dependency for a

given instance – if the SPD uses the dependency for deployment or usesdevice relationships. This

would, for example allow an application to place two instances of the same component in different

domains.

An optional top-level SAD deploymentdependencies element allows for global dependency

overriding across all applicable application components (see Figure 17). Using this approach does

not impose the dependency on a component, but overrides it as if a like-named dependency existed

within the component‘s SPD. This approach is likely more applicable within an assembly that uses

nested applications.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

32

Figure 17 Dependency Hierarchy

At the highest level of the dependency hierarchy, a client can optionally supply

deploymentdependencies which could be applied to the entire application. A common usage

scenario would be to specify a radio channel placement dependency. As Figure 18 depicts, when

application nesting is used, the rules stay the same but overriding occurs from the outermost SAD

(highest precedence) to the innermost SAD. An additional deploymentdependency is added to the

assemblyinstantiation element. This allows dependencies to be supplied that would apply to that

nested application (and any of its children). A common usage scenario for this capability would be

to place distinct sub-applications in different domains.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

33

Figure 18 Dependency Hierarchy and Sub-Applications

The following table provides an example of a class of allocation properties and how they might be

used within a system:

Figure 19 Allocation property examples

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

34

3.7 SCA WAVEFORM CONSTRUCTION

3.7.1 Overview

The SCA component structure contains a collection of building blocks that a product developer can

combine in order to produce a deliverable, e.g. a waveform or service implementation. The process

of creating an end product requires a series of engineering decisions, which from an SCA

perspective are centered on decomposing the overall product functionality into encapsulated

elements that can be integrated with the defined SCA components.

3.7.2 FM3TR waveform example

The publicly available FM3TR waveform architecture is illustrated in Figure 20 (this waveform is

available from the JTRS Open Source Information Repository [13]). The yellow-colored

components represent radio set functionality, whereas the red and blue colored blocks represent

waveform software components.

SCA contains component definitions that should be used for each macro-sized component. Any of

the macro-sized waveform components, for example the Data Link Control (DLC) component,

could be implemented by aggregating several smaller modules or routines, but those routines would

be bundled and it would only expose functionality to external users via a consolidated set of

interfaces.

SCA utilizes a ―port‖ construct as the mechanism by which a component may be extended to

provide application specific functionality and behavior. The blue and red

ApplicationResourceComponents on the GPP expose: in, out, and control ports. The core

framework can connect the port interfaces to other ApplicationComponents or

PlatformComponents in order to provide overall waveform functionality. Generally, the ‗in‘ ports

are described as ‗provides‘ ports, whereas the ‗out‘ ports are ‗uses‘ ports, because they either

provide or use port connections, respectively.

Using either the middleware services provided by the radio set, or direct C++ pointers, connection

IDs and object references permit independent software components to communicate. The

components only need each other‘s pointer or object reference. The messaging becomes more

difficult if the components are distributed into separate memory partitions. For such deployments,

middleware services allow a general solution to be applied throughout the complete radio set.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

35

Figure 20 Example FM3TR SCA Waveform Design

The FM3TR waveform is a simple time domain multiplexed access (TDMA) application with

Continuous Phase Frequency Shift Keying (CPFSK) as the baseband modulation. The JTRS

implementation provides either data or voice operation. Continuously Variable-Slope Delta

modulation (CVSD) is implemented for the vocoder. Reed-Solomon (R-S) forward error coding is

used to improve the bit reliability of the wireless link.

The Data Multiple Access Control (MAC) is an SCA ApplicationResourceComponent that

converts the input data stream into data symbols grouped to match the R-S coding format. The

voice MAC performs a similar operation for the data stream produced by the vocoder. The A-code

is a simple 32-bit synchronization code used to synchronize transmitter and receiver. The S-code is

a second synchronization word used to identify data packet types such as voice, data, etc.

The architecture and deployment of this waveform is fairly typical for SCA implementations,

although other variations are possible. In this example, the waveform components deployed on the

FPGA and DSP do not have SCA interfaces. Historically radio architects have attempted to wring

the last drop of performance from the DSP and FPGA devices and not implemented SCA interfaces

on these lower-level software components. There is a substantial cost for this strategy – a loss of

portability for these waveform components. However, advances have made extending the full SCA

model beyond the bounds of the GPP much more technically feasible.

An example logical model of an FM3TR radio is illustrated in Figure 21, complete with radio

devices, services, and core framework components.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

36

Figure 21 Example Deployment of FM3TR

3.8 RESOURCE AND DEVICE INTERFACE DECOMPOSITION

3.8.1 Overview

SCA 4.0 reworked the composition of the resource and device interfaces as a component of the

other changes that occurred within the specification. Two primary changes occurred; the first of

which removed the inheritance relationship between the Resource, Device, LoadableDevice and

ExecutableDevice interfaces; the second created new lower level interfaces and shifted some of the

attribute and operation definitions to those new interfaces. The finer granularity of the SCA 4.0

interfaces provides the developer with the ability to create more secure and lighter weight

components. The net impact of the changes is that the content of the top level interfaces, e.g.

Resource, will be roughly identical to that of prior SCA versions; however trivial modification will

need to be executed within the implementations to accommodate the new structure. The requisite

changes should be straightforward and oriented toward moving code around or changing the format

of an operation invocation and not introducing new logic. This illustrates the change in the

interface inheritance relationships from the perspective of the ExecutableDevice interface.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

37

Figure 22 ExecutableDevice Interface Inheritance Relationship

3.8.2 Resource Related Modifications

3.8.2.1 Resource interface changes

The new structure of the Resource interface supports the SCA 4.0 optional inheritance pattern as

well as the least privilege pattern employed within the JTRS APIs. The changes transform the

interface into an empty shell that serves as a common, well known entry point for an interface user

to a component that realizes the interface. From the user‘s perspective, there is the assurance that

they will always interface with a CF::Resource and not a proprietary variant of the interface that

was tailored to obtain a specialized realization. The flexibility and power of the approach becomes

apparent when it is evaluated from the provider‘s perspective. Figure 23 highlights the Resource

interface changes. The Resource shell was created by moving the identifier attribute to the new

ComponentIdentifier interface and the start and stop operations to the ControllableComponent

interface, leaving nothing directly within a Resource.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

38

Figure 23 Resource Interface Refactoring

As seen in Figure 24, all of the inherited Resource interfaces, with the exception of LifeCycle, may

be optionally inherited by a realization of the Resource interface. Having the ability to

conditionally inherit these interfaces allows the interface realization to be tailored to a product

specific set of requirements. Eliminating unnecessary interfaces also increases the assurance level

of the created component because the implementation will not contain any ―dead‖ code and the

finer granularity interface definitions allow the developer to expose only the interfaces and

information that need to be provided externally.

Figure 24 Resource Interface Optional Interfaces

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

39

3.8.2.2 ComponentFactory Interface Changes

The ComponentFactory, pictured in Figure 25, was also refactored. The ComponentFactory

interface modifications take advantage of optional inheritance in a manner similar to that applied to

the Resource interface, Figure 24, but it has two important distinctions. The shutdown operation

was removed from the interface in lieu of an approach that aligns its life cycle management with

the other CF interfaces, i.e. utilizing the LifeCycle interface. Secondly, the ComponentFactory

interface was not refactored as a shell because the cost of creating the new interface did not

outweigh the low likelihood that there would be component factory collocation within a process

space.

Figure 25 ResourceFactory Interface Refactoring

3.8.3 Device Related Modifications

3.8.3.1 Device and LoadableDevice interface changes

The Device, Figure 26, and LoadableDevice, Figure 28, interfaces were refactored such that they

no longer have an inheritance relationship with the Resource interface. Both interfaces utilize

optional inheritance in a manner similar to the Resource interface and have been refactored as

shells.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

40

Figure 26 Device Interface Inheritance Refactoring

Figure 27 Device Interface Refactoring

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

41

Figure 28 LoadableDevice Interface Refactoring

3.8.3.2 ExecutableDevice Interface Changes

The ExecutableDevice interface, Figure 29, was refactored so that it no longer has an inheritance

relationship with the LoadableDevice interface however it was not converted to a shell interface.

Technically speaking, this interface should have been converted to be consistent with the other two

device interfaces, but it was not because the low probability of ExecutableDeviceComponent

collocation did not warrant incurring the cost associated with making the change.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

42

Figure 29 ExecutableDevice Interface Refactoring

3.8.4 Summary

The SCA 4.0 resource and device interfaces were refactored to remove many of the operations and

attributes from the top level interfaces and break the inheritance relationship between those

interfaces and the CF::Resource interface. The underlying rationale behind operation and attribute

removal is focused upon providing the developer with a mechanism to ―right size‖ their

components to the product requirements. Eliminating of the inheritance relationship allows the

components to circumvent the collocation prohibitions that are discussed in the Lightweight

Components section 3.11.

3.9 REFACTORED CF CONTROL AND REGISTRATION INTERFACES

3.9.1 Overview

SCA 4.0 reworked the composition of the control and registration interfaces as a component of the

other changes that occurred within the specification. The significant change that occurred was that

the interfaces were refactored into smaller, more concise, standalone interfaces. The composition of

these interfaces ensures that only the methods needed for management and registration are provided

to the consuming components. Having these prohibitions in place enhances the assurance profile of

the platform because it follows the least privilege pattern. The refactoring also improves platform

and system performance because it contains modifications that allow the SCA to be transformed

from a pull to a push model registration approach.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

43

3.9.2 DeviceManager Interface Changes

The DeviceManager registration operations, in Figure 30, were collapsed and migrated away from

the interface. The migration was consistent with the principles of the least privilege pattern in that

it is unnecessary for a client that already has a reference to a DeviceManagerComponent to require

an additional interface to provide the ability to register that component. The move takes advantage

of the fact that the only components required to register with a DeviceManagerComponent are

those that it launches, and it is a reasonable assumption to make that a DeviceManagerComponent

can provide a registration address as part of the launch parameters.

The registration process, which had been performed through an association between a

DeviceManagerComponent, DomainManagerComponent and ApplicationFactoryComponent, was

refined as part of the redesign. The SCA 4.0 design introduces a single capability that can be

associated with and used by any of those components. The behavior associated with this new

registry capability was reworked to leverage a push model mode of operations which yields

substantial performance improvements. Lastly, the registries take advantage of the fact that they are

able to provide a general purpose registration capability so that there is no longer a need to

distinguish between service, device or application component registration.

Figure 30 DeviceManager Interface Refactoring – registration operations

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

44

The refactoring activity removed the DeviceManager attributes from the top level interface. The

predominant usage of these attributes before SCA 4.0 was in interrogation from the

DomainManagerComponent as part of the pull model registration activities. These attributes are no

longer needed for push model registration because the registering DeviceManagerComponent

should provide the values as part of its registration. The refactored design provides an optional

mechanism for the prior DeviceManager attributes to be incorporated in case the implementation

finds it necessary to preserve the ability of the registered components to be accessed externally.

Figure 31 DeviceManager Interface Refactoring – attributes

The DeviceManager inheritance relationship with the PortAccessor and PropertySet interfaces,

Figure 32, was made optional per the optional inheritance pattern. The inclusion or exclusion of

these interfaces is determined by the DeviceManagerComponent‘s need for connections or

implementation specific attributes.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

45

Figure 32 DeviceManager Interface Refactoring – miscellaneous operations

3.9.3 DomainManager interface changes

The DomainManager registration operations, Figure 33, were collapsed and migrated away from

the interface. The rationale for these changes mirrors that which was provided for the

corresponding changes in the DeviceManager interface. In addition, the DomainManager interface

has an additional pair of interfaces that are specifically used for event registration, which SCA 4.0

migrated to a new interface. Moving the event operations outside of the DomainManager interface

aligns with the least privilege approach; however SCA 4.0 did not fully integrate those services

with the registration consolidation that occurred within the component registry. The event

registration operations remained in a distinct interface because they have a wider range of potential

users, spanning from components launched by a DeviceManagerComponent to consumers that

reside outside of the framework implementation who should not have little to no access to

framework internals pertaining to registered components.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

46

Figure 33 DomainManager Interface Refactoring – registration operations

The DomainManagerComponent also depends on the presence of an additional registry, the

manager registry, see section 3.18 to provide a full array of registration services. The application

installation and uninstallation operations were also migrated away from the component. This

migration was performed to satisfy scenarios, such as some forms of static system configuration

where no capability need exist to add or remove applications. Lastly, it should be noted that the

DomainManager attributes were not removed from the interface. The reasoning behind these

attributes remaining in the interface is that the DomainManagerComponent provides the interface

between a platform domain and its external consumers, e.g. an external management system or user

interface, and they provide the necessary information for those consumers to access the system

configuration.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

47

Figure 34 DomainManager Interface Refactoring – manager registration operations

Figure 35 DomainManager Interface Refactoring – installation operations

3.9.4 Application Interface Changes

The Application interface, Figure 36, was refactored such that it provides the option to remove

client visibility of many of the interface attributes. These attributes provide a way for clients to

interrogate an application‘s run time internals. All of the information contained within these

attributes is essential for proper framework operations, however several scenarios exist for which it

is not needed by other clients. Moving the attributes to a separate interface and utilizing the

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

48

optional inheritance capability provides implementations with the ability to provide this detailed

information as required and appropriate.

Figure 36 Application Interface Refactoring

3.9.5 ApplicationFactory Interface Changes

SCA 4.0 provided a window of opportunity to clean up the ApplicationFactory interface, Figure

37. The ApplicationFactory interface is relatively simple so there were no large gains to be

achieved by introducing optional interfaces within the model. However, ApplicationFactory had a

redundant attribute which was removed in order to clean up the interface specification.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

49

Figure 37 ApplicationFactory Interface Refactoring

3.9.6 Summary

The revised model of the SCA control and registration interfaces provides a standardized

mechanism to reduce the size and increase the assurance level of an implementation. These

modifications provide a means to shrink implementation size and lower the associated product

development cost because there are fewer interfaces and requirements that need to be satisfied

during the development process. However the larger impact is the fact that these new constructs

allow a product development team to make intelligent determinations regarding the system

architecture and its information that will be exposed for external consumption.

3.10 STATIC DEPLOYMENT

3.10.1 Overview

The earlier approach to SCA deployment uses a strategy that emphasizes the framework‘s dynamic

capabilities. Within the deployment model the ApplicationFactoryComponent creates software

components by sending instructions to ComponentBaseDevices representing the processors. After

the components have been instantiated, the ApplicationFactoryComponent sends ‗connect‘

commands to the components, providing them the object references necessary for them to

communicate with the desired component. The ApplicationFactoryComponent then reads the

Software Assembly Descriptor (SAD) file to ‗wire‘ the waveform together.

The deployment strategy is very flexible and is well suited to scenarios that include target

platforms that need to accommodate a wide breath of candidate options. On the flip side, the

flexibility comes at a price because deployment performance (i.e. speed) can suffer if there are

several permutations of devices and configurations that can potentially host the applications. SCA

developed a couple of approaches across its recent releases that provided guidance on how to

improve deployment performance, one of which was the deployment optimizations that constrained

the number of candidate deployment configurations that could host an application. A second

optimization was the introduction of language that authorized a platform to preprocess its domain

profile files, thus reducing the need for xml parsing or processing to occur as part of deployment.

SCA 4.0 provides yet another optimization with the introduction of a common approach for static

deployment.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

50

3.10.2 Deployment Background

Figure 38 illustrates the steps that need to take place for application deployment to occur:

Figure 38 ApplicationFactory Role in Component Deployment

1. Developer creates individual system components

2. Platform engineers and developers identify system configuration

3. Platform provider integrates system

4. Platform provider packages and delivers product

5. Platform user / administrator deploys application

6. User uses application

Static application deployment is characterized by the framework not having to make any

determinations regarding which processing element should host deployed components and

receiving some degree of assistance related to establishing connections between

ApplicationComponents. Having no or limited responsibilities associated with either of these

activities expedites the deployment process because fewer decisions need to be made and less

actions need to be taken to bring up an application.

3.10.3 Connection Management

SCA 4.0 permits legacy type connections to occur within a platform. This can be accomplished

through having the ApplicationFactoryComponent query each component for its provides port

connection IDs and then sending those IDs to the components that require connection. While this

is similar to the earlier SCA connection mechanism, it requires a slight modification of the legacy

waveforms. A second alternative has components return their connection IDs upon registration,

thus elimination the communication traffic required by getProvidedPorts(). This method is not as

flexible as the first so it does not support plug and play components, but it improves waveform

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

51

startup times. A third approach could be employed in a more static scenario where the

ApplicationFactorComponent received connection information generated at build time from the

domain profile files. Within this scenario, the ApplicationFactoryComponent might not require

registration from the deployed components as the target configuration would already be known. In

the full realization of this design, upon instantiation a component would be pre-wired and ready for

operation

3.10.4 Example

This example usage of static configuration is subject to the following constraints:

1. The application will not utilize the enhanced deployment capabilities

2. The application will not create any of its components via an

ApplicationComponentFactoryComponent

Application installation will be identical to how it has always been executed, its objective to

transfer the application software onto the platform. The application will use the system capacity

management mechanism and model, but it will do use with the assumption that the application to

be deployed will fit on the desired target processing element. The application will use the

ApplicationFactory::create operation deviceAssignments parameter, the value needs to be provided

by the system developer, to target an ApplicationResourceComponent to a specific

ComponentBaseDevice (this eliminates the need for the ApplicationFactoryComponent to take an

active role in making a decision about where to deploy the component. To use an approximation of

the third connection approach from above, the developer will populate the SAD with a value in the

providesport element‘s stringifiedobjectref attribute. Having a value here implies that the

ApplicationFactoryComponent will have knowledge of the provides port location. (Note: A

determination was made that given the presence of the aggregated connectUsesPorts operation

there was not a significant improvement that would be realized by adding a static capability to

supply uses port information).

The fully static alternative that could be realized which would eliminate the need to call the

deployment machinery would require the uses port information to be integrated within the

deployed component as well. However, the current thought is that any potential performance

improvements associated with that approach are outweighed by its lack of flexibility.

3.11 LIGHTWEIGHT COMPONENTS

3.11.1 Overview

Lightweight Components and Units of Functionality are the two SCA 4.0 mechanisms which can

be used to better align SCA based products with mission requirements. Lightweight Components

provide a flexible architectural approach that can be leveraged to accommodate various platforms

requirements (mobile versus static, single channel versus multiple channels, single waveform

versus multiple waveforms, small form factor, etc.) instead of a one size fits all architecture.

Users commented that the SCA 2.2.2 interface associations led to a one-size-fits-all implementation

which resulted in components being larger than necessary. For example, an SCA 2.2.2 resource

component includes testable objects, properties, etc. However, if a component doesn‘t need self-

test or properties the specification still required the component developer to implement that

functionality. A developer could circumvent the problem by removing the inherited interface

manually, which could lead to compliance problems, or providing a stubbed implementation that

would be compliant but would introduce dead code into the product and increase its size.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

52

SCA 4.0 introduces a new design pattern – optional inheritance. An example of how this feature is

included within the Resource interface is illustrated in Figure 39. Since this capability is not

supported natively within UML the optional inheritance is depicted as a note over the inheritance

line. For the Resource interface only one interface is mandatory – LifeCycle. Other interfaces are

available as necessary.

Figure 39 Resource Interface Optional Inheritance

3.11.2 Benefits

Pre-compiler definitions and IDL directives permit developers to specify which interfaces a

specific component requires. Each optional inheritance flag shown in the UML is associated with a

pre-compiler directive in the IDL and a UOF in Appendix F (reference [6]). Having the ability to

eliminate unnecessary interfaces allows SCA 4.0 components to be smaller and more focused than

components realized in accordance with earlier SCA versions. Having fewer interfaces to realize

reduces a component‘s footprint size; one should remember that there are size implications

associated with stubbed implementations. The savings realized from a single component might be

minimal, but the amount can add up when extended across all of the components that comprise a

radio set. Omitting rather than stubbing unneeded operations can also improve a system‘s assurance

profile because it eliminates a potential vulnerability of having an additional system operation, in

this case one that might be given less scrutiny because it was not intended to be used. Lastly,

omitting the extraneous interfaces can reduce development time across the entire software

development life cycle. Making a decision to not implement an interface early in the development

cycle reduces a cascade of requirements that span the entirety of the development process. When

the decision is made to implement an interface, even a dummy implementation, it incurs additional

costs such as requirements analysis, design decisions, development time, software integration and

testing and compliance testing. The total effort saved as a result of not performing those activities

class Resource

«interface»

Resource

«interface»

LifeCycle

+ initialize() : void

+ releaseObject() : void

«interface»

ComponentIdentifier

+ identifier: string

INTERROGABLE

«interface»

PortAccessor

+ connectUsesPorts(Connections) : void

+ disconnectPorts(Disconnections) : void

+ getProvidedPorts(Connections*) : void

CONNECTABLE

«interface»

PropertySet

+ configure(Properties) : void

+ query(Properties*) : void

CONFIGURABLE

«interface»

TestableObject

+ runTest(unsigned long, Properties*) : void

TESTABLE

«interface»

ControllableComponent

+ started: boolean

+ start() : void

+ stop() : void

CONTROLLABLE

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

53

can result in a significant time savings that will grow linearly as additional components are

incorporated within the system.

3.11.3 Alternative Solutions

During the design process two approaches were considered as routes to get to the endpoint of

lightweight components. The first approach, illustrated in Figure 40, can be thought of as optional

realization. In optional realization, a component would only realize the interfaces ―<i>‖ that it

needed. In the example, the My WF Component realization would have the option of providing an

implementation for either the PropertySet and/or the Lifecycle interfaces.

Figure 40 Component Optional Realization

The optional realization approach was problematic because of the two scenarios represented in

Figure 41. In the instance on the left, the framework would need to account for My WF Component

having a relationship with either or both interfaces. The other approach would require each

component implementation to define an implementation specific interface to act as an intermediary

that combined the required interfaces into a single reference. Both of these are viable alternatives,

but they would require rework of existing component implementations and may result in additional

―is_a‖ calls within a CORBA PSM, to determine whether or not a component realized a particular

interface. The additional calls would be a negative for framework operations because they would

impact system performance.

Figure 41 Optional Realization Issues

SCA 4.0 introduced the concept of optional inheritance to implement the concept of Lightweight

Components. Optional inheritance addresses the shortcomings of optional realization to provide a

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

54

flexible solution. Using optional inheritance, a component always realizes a single interface, which

benefits framework management, but allows that interface to optionally inherit a collection of other

interfaces. As an example, in Figure 42, My WF Component realizes the Resource interface.

Resource has a collection of interfaces that it could have inheritance relationships with. This

example has it inheriting from the Lifecycle interface, a mandatory relationship, and the optional

PropertySet interface. Optional inheritance is modeled and implemented using pre-compiler

directives, CONFIGURABLE in this instance, that are resolved at IDL compilation time.

Figure 42 Component Optional Inheritance

An additional benefit of this approach is that the components, both platform and application, are

provided with a well-known, common interface by the framework so system developers don‘t have

to invent implementation specific interfaces. This aspect of optional inheritance allows components

to be backwards compatible with existing SCA components.

Optional inheritance does introduce couple of challenges; the first of which have to deal with its

relationship to defined Standards. The concept is not supported within the UML specification

where inheritance is defined as a 1..1 relationship. Members of the SCA working group have

discussed the idea with the UML community and while the value of the concept was recognized no

champion was identified to work the issue of introducing it within the specification. While outside

the bounds of the specification the majority of existing UML tools support modeling this concept

through use of their native constructs or extension mechanisms. Secondly, the UML Profile for

CORBA (reference [7]) does not address the concept of how to handle IDL compiler directives. We

believe that this topic has not been incorporated because the specification has not been refreshed in

a number of years and feel confident that we would be able to provide the necessary guidance to

get the appropriate text incorporated within the document.

Another item that needs to be accounted for is a restriction associated with components collocated

within a Single Operating System Address Space. This restriction, which is the same that exists in

earlier SCA versions, dictates that a single IDL translation needs to be used. So if two Lightweight

Components, see Figure 43, exist within the same address space, they would need to utilize the

same Resource configuration of inherited interfaces.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

55

Figure 43 Lightweight Components within an Address Space

The underlying implication is that in SCA 4.0 if a developer wants to tailor their components to

have differing composition by utilizing optional inheritance, then an approach such as that

illustrated in Figure 44 needs to be used where components A and B reside in different address

spaces.

Figure 44 Successful Use of Lightweight Components

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

56

In practice this restriction should not be onerous because in most instances platform and application

components are delivered and deployed independently so no changes should be required to take

advantage of the potential savings provided by Lightweight Components. It is also the case that the

individual components of a single application will have the same configuration or any specialized

components will be targeted for a separate address space.

3.11.4 Implementation Considerations

One of the constraints levied on the use of Lightweight Components is that an

ApplicationManagerComponent is not able to use any of the lightweight configurations. This

constraint is included to preserve backwards compatibility with earlier implementations. Within the

CFApplication.idl the optional inheritance pre-compiler directives for CFResource.idl must be

defined at compile time because the inherited Resource interface is not optional.

Another important point to keep in consideration is that Lightweight Components are an optional

capability. If a developer chooses not to leverage any the optional inheritance capability then they

will be able to develop compliant applications that are very similar to those produced in accordance

with SCA 2.2.2. Some developers may determine that the changes influenced by Lightweight

Components do not exceed the cost benefit threshold tied to the change. However Lightweight

Components provide a common approach to optimize and tailor components for those that want to

use the capability.

3.12 SCA NEXT DEVELOPMENT RESPONSIBILITIES

3.12.1 Overview

SCA 4.0 contains a number of new component and interface definitions. An objective in the

evolution from SCA 2.2.2 was to provide additional clarification that would help document readers

become proficient with SCA more quickly by highlighting the areas for them to focus their

attention. SCA 4.0 section 2.2 provides insight by identifying which developers are involved in

realizing specific interfaces and components. Armed with that information a developer has the

ability to navigate through their higher priority sections of the specification.

3.12.2 Component Development Alignment

The SCA 4.0 documentation provides some separation between the components hosted by the radio

set versus those provided by waveforms. Figure 45 attempts to identify specific interfaces of

interest to the various stakeholders in a radio set architecture.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

57

Figure 45 General Allocation of Components to Radio Developers

SCA components are the elements that will be implemented by an SCA developer. Figure 45

identifies four classes of developers and a designation for an Abstract Component along its vertical

axis.

3.12.3 Component Products

The Abstract components encapsulate functionality that is not exposed directly to an external

consumer or provider. Abstract components can be realized independently and used by multiple

user facing components. ComponentBase is an example abstract component. It provides the core

abstraction, collection of interfaces, relationships and requirements that are used by other SCA

components. ComponentBase includes associations with the DomainProfile files and many of the

fundamental SCA interfaces such as the LifeCycle interface. Application Developers, Device

Developers, Service Developers and Core Platform Developers all create user facing components

that have an inheritance relationship with ComponentBase, i.e. each of those components are

responsible for providing interface realizations and fulfilling the applicable ComponentBase

requirements.

Application Developers provide user facing, software intensive solutions such as waveforms that

are deployed on the radio platform. In most cases a waveform will be delivered as a collection of

the Base Application Components. An application consists of assembly controller(s), application

resources and application component factories. The components are typically deployed separately

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

58

and provide functionality, capabilities and associations as dictated by their operational

requirements and those provided within the SCA model representations (which includes any levied

by the Operating Environment such as the AEPs or their chosen Middleware). When the

components are deployed separately, even the same type of component can have differing

configurations and constructs.

Device Developers provide software abstractions that mediate between system components and the

physical hardware elements. Device Developers provide implementations of the Base Device

Components. The components typically have a one to one relationship with a piece of system

hardware and each one provides the functionality and capabilities dictated by the associations

provided within the SCA model representations. Since Base Device Components need to work with

a specific hardware element there are instances where they cannot be fully portable however it is

advisable that Device Developers make every attempt possible to incorporate techniques and

practices that promote portability.

Service Developers provide software abstractions that provide common functionality for multiple

system components, be they applications, devices or other services. A service can be either a user

facing product or a utility that provides additional capabilities to another system element. Services

are unique within SCA because there are two distinct types of Framework Service Components,

ServiceComponents and CF_ServiceComponents. CF_ServiceComponents should be used in

scenarios where an SCA developer is providing the service implementation. Since the developer is

providing the design and implementation it is straightforward for them to incorporate realizations

of the SCA components and interfaces. ServiceComponents fulfill the need for integrating services,

such as COTS components, that provide critical system functionality but do not have source code

that is accessible to the developer. In those cases, the service developer would be limited to

providing supplemental resources, such as domain profile files, that would allow the service to be

deployed by the framework.

Core Platform Developers provide software solutions that provide the essential Core Framework

functionality, device and domain management and application component creation and

management, to a radio platform. Similar to device components, the Framework Control

Components are not explicitly targeted for porting, but by using the SCA constructs it is highly

likely that they will be realized as highly portable components with localized areas that contain the

references to the radio set specific operating environment. Core Platform Developers typically will

be responsible for the selection of and/or integration with the platform OE components. The SCA

does not constrain the manner in which Framework Control Components interact with OE

components similar to the way that application components are constrained, however it is important

to recognize that these implementations are governed by any overarching security requirements.

Framework Control Components provide a baseline for the capabilities that Core Platform

Developers need to provide. It is important to recognize that a wide array of enhancements, such as

fault tolerant frameworks, can be provided as long as the mandatory capabilities are provided.

3.13 COMPONENT MODEL

3.13.1 Overview

SCA 4.0 introduces a component model as a means to improve the clarity and consistency of the

specification. Earlier SCA versions contained numerous references to ―components‖, but did not

define the term and its usage was very inconsistent throughout the document. Consequently, a large

burden was placed on the document consumer to make the determination of which elements

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

59

described the necessary attributes of static versus the runtime system elements. The existence of the

components also provides a foundation for the proper use of software modeling and Model Driven

Development techniques within the development of SCA compliant products. Figure 46 contains

an illustration of some of the SCA components and their primary interfaces.

Figure 46 SCA Component Relationships

3.13.2 Interfaces and Components

SCA 2.2.2 was expressed in terms of interfaces, or more specifically CORBA interfaces.

Accompanying each interface specification was information describing its associations, semantics

and requirements. This allocation of information was often challenging for new readers of the

specification because it did not align with all of their expectations of what an interface should

provide and it did not support an easy decomposition of implementation responsibilities.

An interface is a shared boundary or connection between two entities. It specifies a well-defined,

and limited, role which needs to be fulfilled. The role may either be functional (defined specific

behavior to be performed; ―to do‖ or non-functional (identifies criteria used to judge the qualities

of operation: ―to be‖). Interfaces define ―what‖ needs to be done, ―why‖ something needs to be

done, but not ―how‖ to do it. As such, most pure interfaces tend to be stateless.

Since a well-defined interface needs to define a limited role, and complex system elements

generally need to fulfill multiple roles, multiple, separate interfaces are typically required to fully

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

60

define the set of functional and non-functional requirements. It is often the case that multiple

interfaces need to interact with one another and only certain sequences of those interactions will

result in useful functionality. Therefore it is often useful to package these interactions between

multiple interfaces into an integrated unit of defined behavior known as a component.

A Component is an autonomous unit within a system or subsystem. Components provides one or

more interfaces which users may access and the internals of how they are provided are hidden and

inaccessible other than as provided by their interfaces.

Components encapsulate a modular, replaceable part of a system, which within its defined

environment:

 implements a self-contained lifecycle, which may include sequential interaction

requirements which exist between multiple provided interfaces

 presents a complete and consistent view of its execution requirements (MIPS, memory, etc)

to its physical environment

 serves as a type definition, whose conformance is defined by its ‗provided‘ and ‗required‘

interfaces

 encompasses static and dynamic semantics

Table 2 Characteristics of Component and Interfaces

Interface Characteristic Component Characteristic

Role -oriented  best suited as problem domain

/ analysis-level abstractions

Service -oriented  best suited as solution

domain / functional-level abstractions

Conceptual / Abstract / Unbounded

Responsibilities

Practical / Concrete / Constrained

Responsibilities

Have no implementation mechanisms Can – and often does – provide prototype or

default implementations

A necessary, though not sufficient, element of

Portability and Detailed Architecture / Design

Reuse

Properly-developed, Components improve

prospects of Portability and Detailed

Architecture / Design Reuse

Interfaces are generally SYNTAX without an

underlying SEMANTIC definition, and are

generally seen as STATELESS as a result

Components MUST HAVE well-defined

SEMANTIC baselines because they fulfill

multiple Roles within a Framework 

Components are MUCH-MORE than the sum of

the Interfaces which they implement

3.13.3 Benefits and Implications

The introduction of the component model will provide a concrete bridge from interface to

implementation responsibilities and a well-defined path for integrating model based software

engineering techniques within the development process. Having these abilities will become even

more important and the use of new SCA optionality and extension mechanisms are more prevalent.

The textual and formatting changes associated with the incorporation of components within the

framework are visually intimidating because they introduce a large number of new sections, new

model elements and move text around. The division of responsibilities may at times look

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

61

duplicative e.g. why there is a need for a DomainManager interface and a

DomainManagerComponent. However, as you read the corresponding sections you will see that in

most case the component oriented sections will include semantics and requirements associated with

a deployed and executing system or element.

In terms of the SCA product implementation, the impact of the component model should be

negligible. The component model does not contain any constructs that map into IDL, therefore any

requirements that are implemented by a product developer must be done within the context of the

IDL generated from the interface definitions. In fact, the layout represents how most current JTRS

SCA developments already implement their software elements:

 the developer creates an implementation class that represents the component, e.g. an

ApplicationResourceComponent

 the implementation class has associations with the classes that correspond to the

CF::Resource, PortAccessor, PropertySet and other interfaces

 the implementation fulfills the roles and interfaces prescribed by its associated SCA

elements.

The component model is still a work in progress within the specification for a couple of reasons.

There were a number of modifications made to accommodate inclusion of the new concept and it is

fully expected that some elements that should have been moved were not. Secondly, at time of

publication, the group had not come to consensus on far reaching decisions such as whether or not

exception throwing should be described in an interface or component sections.

It is expected that these and other issues related to components will continue to evolve in future

revisions of the specification, however, consistent with the earlier discussions, these modifications

will improve the quality of the specifications and enhance its use within modeling environments

but they should have no impact on an SCA product implementation.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

62

3.14 SCA MAINTANENCE PROCESS – HOW TO DEVELOP A NEW PSM?

3.14.1 Overview

Figure 47 depicts how a proposed SCA change is handled. Proposed changes could be anything

from minor redlines to introducing a new capability within the specification. Successfully

implementing changes is a collaborative process that involves the change submitter, the ICWG

staff, the SCA working group and the JTNC. A summary of the process is that once an SCA

enhancement is submitted, the SCA working group will collaborated with the submitter to

determine if or how the enhancement should be integrated within the specification. Once the final

revisions are complete, the ICWG staff will work with the JTNC to develop a strategy regarding

when and how the change will be released. Detailed descriptions of the individual process actions

are beyond the scope of this document but may be obtained by contacting the ICWG staff at jtrs-

sca@spawar.navy.mil.

SCA Maintenance Process

Submitter

ICWG

Staff

SCA

Working

Group

JTNC

1

Prepare &

Submit

Proposal

Yes

3A

Prepare

& Submit

Briefing

No

4

Working

Group

Meeting

5B

Review

Proposal

5A

Adjudicate

Comments

3B

Approve?

7

Approve?

8B

Way

Forward?

9B

Release

Errata /

Corrigenda

Hold

8A

Revise &

Resubmit

Proposal

No

2

Redline?

End Process

9A

Release

Revision

Process

Legend

Process

Action
Decision

Sub

Process
Process Termination

6

Working

Group

Meeting

Yes

Issue

Revision

Issue

Errata /

Corrigenda

Figure 47 SCA Change Proposal Process

3.14.2 SCA Change Proposal Process – Submitter Roles

SCA has evolved largely based upon inputs, new ideas and lessons learned, from its community of

developers. Consequently, inputs from the submitter are an essential part of the process. The

primary role of the submitter is to collaborate with the SCA working group to communicate the

reason for or rationale associated with the change. The submitter will provide the information via a

change proposal form, discussions or documentation. The information can either be provided with

the submission or a byproduct of requests initiated by the working group.

SCA 4.0 provides a platform which will exercise this process as the specification was built with an

eye towards extensibility driven by the specification‘s user community. The SCA 4.0 design team

started with a full PSM definition that was equivalent to the definition of SCA 2.2.2, a vision for

how the specification should continue to evolve and an outline of an additional PSM. The initial

SCA working group was stretched thinly regarding the amount of staff that were available to define

mailto:jtrs-sca@spawar.navy.mil
mailto:jtrs-sca@spawar.navy.mil

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

63

additional PSMs and did not want to expend a large amount of effort on a PSM that would not be

used. Therefore the group decided to proceed with a ―need based strategy‖ that would wait for a

community of interested users to drive the expansion of additional models.

The need based strategy would have a submitter develop an idea for a new PSM. The proposal, step

1 in Figure 47, could be anything from an errata to something that resembled an additional

document that was ready for inclusion to appendix E. The SCA working group would work with

the submitter to refine the proposal so that it would be ready for presentation to the larger ICWG

group in step 4. Beyond that point the idea would be fleshed out and refined until it reached a point

where it would be approved in step 7. Step 7 does represent a decision point where the change will

be voted upon, but practically speaking it is unlikely that a full version of a new PSM proposal will

reach this point if it doesn‘t have majority support of the SCA working group.

New PSM submissions should be presented in a format that is equivalent to that of the existing

appendices. Content wise the new proposal should cover equivalent ground of the current specs, i.e.

if an XML schema version of the descriptor files was to be proposed, it should support the

capabilities of the Document Type Definition (DTD) based descriptors. If it does not contain those

constructs then it would suggest that the DTDs be revisited to see if they could be removed from

there as well. If one were to introduce a new transport, then the design guidelines would encourage

the submitter to base their solution on standard technologies, exclude any capabilities that would be

detrimental to SDR solutions because of domain irrelevance, performance, sizing or security

considerations.

Once a new addition to the specification is approved, then the ICWG staff will collaborate with the

Joint Tactical Networking Center (JTNC) Technical Director (TD), per step 9, to release an update

to the specification. It is the objective that the introduction of new PSMs, if they are self-contained,

will not require a new SCA release however this numbering and organizational approach still needs

to be exercised.

3.15 UNITS OF FUNCTIONALITY AND SCA PROFILES

3.15.1 Overview

Earlier SCA versions have subscribed to a ―one size fits all‖ approach to implementation and

specification compliance. The documents contained descriptions of the SCA elements and

associated a set of requirements with each construct. When a developer chose to incorporate an

instance of one of those elements within their product they were responsible for implementing all

of the associated requirements or seeking a waiver for the capabilities that were not going to be

provided.

The SCA Units of Functionality (UOF) and Profiles were developed to address the restrictions

imposed by the earlier specifications. The intent of the UOFs is to introduce flexible constructs

within the framework so that it can accommodate platform (e.g. resource constrained, fixed wing

aircraft) and architecture (e.g. single versus multiple channel) specific requirements gracefully

which in turn will support the development of products destined for a specific target

implementation.

The primary benefit associated with having UOFs as part of the SCA is that they provide a

standardized approach that allows unnecessary interfaces and requirements to be omitted from a

component specification. The elimination of these requirements has the following ancillary

benefits:

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

64

 Reduced footprint – having the ability to omit unnecessary interfaces reduces the size of the

produced object. Even a stubbed interface realization requires a small amount of space and

these small savings can add up.

 Increased assurance – reducing the size of the produced object also increases the degree to

which the code can be assessed. The reduction in size also minimizes the potential number

of locations in the product that could be exploited. Likewise, having dead or stubbed code

introduces additional locations where some could potentially go wrong or be injected.

 Reduced development time – having fewer requirements to fulfill should have a direct

correlation with a smaller project and shorter development cycle.

 Enhanced product performance – The smaller size and removal of the unnecessary modules

can improve the performance as there is less code to go through and there are fewer

motivations for superfluous context switches.

3.15.2 SCA UOFs and Profiles

SCA 4.0 UOFs were intended to be understood in a manner similar to their POSIX namesakes: a

Unit of Functionality is a subset of the larger specification that can be supported in isolation,

without a system having to support the whole specification. The initial design philosophy behind

UOFs was that they should be restricted to optional SCA features. However, this attitude broadened

as the specification matured so that there are some UOFs that are associated with mandatory

capabilities. Part of the rationale behind this expansion was to identify and highlight tightly

coupled requirements, the other reason was that there were discussions that some of those

capabilities might become optional in the future. Even with the expansion not all SCA

requirements are categorized with a UOF.

The Profiles comprise a set of UOFs, the collection of which is intended to be aligned with

common real world platform configurations. In SCA 4.0 Profiles are only applicable to OEs as it

was more convenient to forecast a relatively small set of common configurations for distinct classes

of target platforms. The concept is that an SCA radio can be an almost infinitely flexible platform

with the Full Profile, or very minimalist with the Lightweight Profile where the radio boots and

begins executing a single waveform with minimal configuration and processing.

3.15.3 Use of UOFs and Profiles

Appendix F (reference [6]), similar to many of the other SCA documents, provides a couple sample

conformance statements. The UOFs and Profiles provide the mechanism to align a product‘s design

with its mission. The product developer communicates a product‘s capabilities to external

consumers and stakeholders via its associated conformance statement:

 ―Product B is an SCA conformant Operating Environment (OE) in accordance with the

SCA Medium Profile containing an SCA Lightweight Application Environment Profile

conforming POSIX layer and an SCA Full CORBA Profile transfer mechanism‖.

In this example the statement contains an explicit reference to a profile (Medium). Figure 48 dictates

the approximately 259 requirements that are applicable requirements for this product. The Medium

profile contains the Management Registration, AEP Provider and Deployment UOFs and the specific

requirements are identified in the SCA Appendix F Attachment 1: SCA Conformance mapping

spreadsheet.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

65

Figure 48 SCA Profiles with OE Units of Functionality

The example conformance statement could be refined to also include additional units of

functionality as follows:

 ―Product B is an SCA conformant Operating Environment (OE) in accordance with the

SCA Medium Profile which contains an SCA Lightweight Application Environment Profile

conforming POSIX layer and an SCA Full CORBA Profile transfer mechanism, and

extended by the Log Capable, Log Producer and Event Channel UOFs‖

The majority of the SCAs ability to be tailored resides within the optional UOFs. At the

PlatformComponent level these units provide 8 standardized capabilities and approximately 226

requirements that could be applied to a component. The degree of encapsulation that was incorporated

within the design provides additional flexibility, such as the option of including a UOF during the

development phase and removing it prior to deployment.

The SCA was not developed with the intent of excluding a mandatory unit of functionality from a

profile. The likelihood of having to do so now is unlikely as the profiles do not include that many

UOFs, however the profile concept is still developing so the benefits of utilizing that type of

strategy will need to be evaluated if the need arises.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

66

3.16 WHAT ELEMENTS OF OMG IDL ARE ALLOWED IN THE PIM?

3.16.1 Overview

The SCA Platform Independent Model (PIM) is communicated two ways within the SCA. The PIM

is communicated via the UML models that are documented within the specification and accompany

the document. Per Section 3, the elements of the PIM are also communicated in IDL; ―OMG IDL is

the standard representation for the standalone interface definitions within the SCA platform

independent model‖.

The IDL representation of the ―SCA PIM‖ is a fixed entity that has its composition determined by

the entity that developed the specification. Consequently the question posed in this section is

irrelevant because there is no latitude for an SCA user to consider adding additional elements to the

formal ―SCA PIM‖.

3.16.2 PIM Background

The Object Management Group (OMG) defines a PIM as a representation that exhibits a degree of

platform independence so as to be suitable for use with a number of different platforms of similar

type. They suggest a common technique to employ in order to achieve platform independence is to

target a system model for a technology-neutral virtual machine.

3.16.3 PIM usage for SCA developers

Within a model driven architecture approach many transformations can occur within a single

abstraction layer. Therefore a user of the SCA PIM might choose to introduce several layers of

refinement of the SCA constructs as part of the system design and development process while

maintaining a platform independent model. The question of what IDL elements should be used is

very relevant for developers who are planning on refining their PIMs. If a waveform is intended to

be portable across multiple connection-mechanisms, then its IDL PIM should not introduce any

elements beyond those specified in Appendix E-3 (reference [8]).

3.16.4 Future PIM evolution

The projected evolution approach for the SCA PIM is that it will migrate to a model which relies

exclusively on UML. In that scenario the PIM would be fully integrated within a tool-based,

largely automated software development process. System developers within this approach would

execute all of their PIM refinement in the tool and in UML. When the modeler was ready to

transition to a platform specific representation, this approach would treat IDL as a platform specific

realization and the tool would facilitate the mapping to the target technology. Unfortunately we are

not yet at a point where we can utilize this approach because the state of the art tools do not

sufficiently support an automated generation of our desired mappings.

Nonetheless, in this scenario, the PIM would still be governed by the constructs defined in

Appendix E-3 (reference [8]); however the restrictions would be less apparent to the system

architect.

3.17 WHAT IS THE IMPACT OF THE SCA 4.0 PORT CHANGES?

3.17.1 Overview

One of the SCA 4.0 changes that has drawn considerable interest has been the refactoring of the

port related interfaces. The specification introduced a new interface, PortAccessor, which

consolidated the Port and PortSupplier interfaces. The new interface represents a change in the

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

67

means in which an application or port user interacts with other framework elements or users.

However the modification affords the SCA with several optimization opportunities and there are

techniques that can be used to minimize the impact of the changes.

Figure 49 Port Interface Refactoring

3.17.2 Port Revisions

The PortAccessor, interface has three primary distinctions from the earlier SCA configuration, the

interface contains information for both port providers and users, the consolidated port behavior is

now integrated with the parent interface through an inheritance relationship (the earlier Port

interface did not have a defined relationship) and the cardinality of the operations has been changed

to accommodate multiple ports on one invocation.

Consolidating the ports into a single inherited interface eliminates the need for a separate uses port

servant because the behavior associated with the client is now integrated within the interface

realization on the uses side component. Collectively, the changes provide a performance

enhancement because during the formation of connections there is no longer a need to obtain

distinct uses ports because they are part of the component. The revised cardinality on the operations

provide a means to reduce the number of required operation calls during the connection

establishment process because many connections can be made with a single call.

The PortAccessor modifications also pave the way for enhanced connection management

functionality. Integrating the port functionality within the provides side of the interface adds a

release capability on that side. The introduction of which allows a provides port to have full

lifecycle support associated with a connection, the implication being that a connection could be

created and destroyed on the provides side, so dynamic port management could occur.

3.17.3 Interface and Implementation Differences

The following changes exist on the uses port side:

 The implementation no longer has to create an association with the Port interface,

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

68

 The client will need to change any of its Port references to PortAccessor,

 The realized operation names will change from connectPort and disconnectPort to

connectUsesPorts and disconnectPorts.

The logic change associated with the operation change should be straightforward as at will only

need to be amended to accept lists of connection endpoints rather than a single endpoint.

A comparable set of changes will need to be performed on the provides ports:

 The interface definitions will change, which in turn will force an IDL recompilation

 The realized operation name will change from getPorts to getProvidesPorts

Associated with these changes, the new operation will return a void rather than an object reference

and the parameter will no longer be a name, but a connection structure.

3.17.4 Implementation Implications

There are steps that can be employed to minimize the impact of the port related changes on an

implementation. Figure 50 highlights some of the similarities and differences of the SCA 4.0 and

SCA 2.2.2 port and connection implementations.

Figure 50 Port Implementation Differences

An SCA implementation could choose to create a ―new‖ realization of the PortAccessor interface.

This would be a reasonable approach to take, especially in instances where there are a limited

number of locations where the code would need to be redone. This approach would likely be

palatable in these situations because, in an unenhanced implementation the PortAccessor

operations should not have very complex application logic.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

69

There are a number of other scenarios where there may be more motivation to preserve the existing

Port and PortSupplier implementations and to maximize the backwards compatibility of the SCA

4.0 design. A new PortAccessor realization can be introduced as a façade for the PortSupplier and

Port realizations. In that role, the responsibility of the PortAccessor would be minimal, it would be

responsible for managing the distinctions between the operation signature differences. Secondly,

the developer can take advantage of the fact that many of the new features optional. Therefore the

differences between the 2.2.2 and 4.0 implementations could be minimized by modeling the

implementation using obtainable ports and not taking advantage of the ―port aggregation‖ feature,

thus minimizing the need to modify the code drastically. Lastly, in an approach that is similar to the

façade pattern, the code could retain the Port interface and realization as a language specific PSM.

A component and its underlying PortAccessor realization would have a delegation relationship or

association to the Port PSM.

3.18 RATIONALE FOR DEVICEMANAGERCOMPONENT

REGISTRATION

Requirement SCA216 specifies that upon start up a DeviceManagerComponent has the

responsibility of registering with a DomainManagerComponent.

A DomainManagerComponent is used for the control and configuration of the system domain.

While not part of the original SCA objectives it is the case that in many instances a

DomainManagerComponent can be viewed as platform agnostic and implemented in a fairly

portable manner.

A DeviceManagerComponent manages a collection of PlatformComponents which are targeted for

a specific node. A DeviceManagerComponent can also be written using a fairly portable approach

or it could be developed in a target specific manner in conjunction with the PlatformComponents

that it will be hosting or its target Operating Environment.

Regardless of the selected development approach, the presence of requirement SCA216 allows for

decoupled, either by provider or philosophy, implementations of the two components. This

requirement provides a foundation that guarantees that even if the components are developed

independently, they can be integrated at runtime via the DeviceManagerComponent registering

with the domain via the DomainManagerComponent's associated ManagerRegistry reference.

3.19 RATIONALE FOR REMOVAL OF APPLICATION RELEASE

REQUIREMENT

Earlier SCA versions contained the following requirement: "The Application::releaseObject

operation for an application should disconnect ports first, then release its components, call the

terminate operation, and lastly call the unload operation on the ComponentBaseDevices."

SCA 4.0 contains the following sequence diagram that demonstrates one scenario describing the steps

associated with an application's release.

1. Client invokes Application::releaseObject operation.

2. Disconnect ports.

3. Release the application components.

4. Terminate the application components' and component factories processes.

5. Unload the components' executable images.

6. Deallocate capacities based upon the Device Profile and SAD.

7. Unregister application components from the component registry.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

70

8. Generate an event to indicate the application has been removed from the domain.

Figure 51 Sequence Diagram depicting application release behavior

The consensus was that this requirement was no longer necessary within SCA 4.0 because the well-

defined ordering that was specified within the requirement did not need to be preserved because the

Application interface contains individual requirements for the disconnect, terminate, release and

unload behavior and the relative ordering of those calls is dictated by their semantics.

3.20 HOW TO FIND AND USE DOMAIN REGISTRY REFERENCES

3.20.1 Overview

A DomainManagerComponent needs to maintain awareness of two registry instances in order to

function properly within an installation, one for component and the other for manager registration.

The two instances account for the different styles of PlatformComponent registration that can occur

within a radio set.

 sd Application Behav ior

CF::CommUser

«interface»

:FullComponentRegistry

«interface»

:ExecutableDevice

«interface»

:PortAccessor

«interface»

:Application

:EventComponent«interface»

:LifeCycle

releaseObject()

disconnectPorts(Disconnections)

releaseObject()

terminate(ProcessID_Type)

unload(string)

deallocateCapacity(Properties)

unregisterComponent(string)

generate event

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

71

Figure 52 Resource Interface Features Optional Inheritance

3.20.2 PlatformComponent registration approaches

In most instances PlatformComponent registration follows a standard pattern; a

DeviceManagerComponent comes into existence with knowledge of the

DomainManagerComponent‘s management registration interface, the DeviceManagerComponent

launches all of its PlatformComponents which subsequently register with their launching

DeviceManagerComponent. The DeviceManagerComponent registers with a

DomainManagerComponent via its associated ManagerRegistry instance once all of its launched

PlatformComponents have registered. Manager registration ensures that not only the manager, but

all of its contained components are registered within the domain.

However, there are also cases where late registration occurs. Late registration is the scenario where

a DeviceManagerComponent registers before all of its components have registered. This lack of

ordering could occur as a result of an implementation decision to not wait for the launched

components to register, a plug and play device being added to the system or a service being

removed and reinstalled as part of a fault recovery process. When late registration occurs the

components will register with the domain via a ComponentRegistry instance and not a

ManagerRegistry.

3.20.3 Implementation approach

The DCD domainmanager element will contain a value that provides information regarding how to

access the DomainManagerComponent‘s ManagerRegistry instance. However to work in both the

standard and late registration cases the object referenced by the domainmanager element will need

to represent both the manager and component registries.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

72

Figure 53 Resource Interface Features Optional Inheritance

An approach that could be used to address this problem would be for the Core Framework Control

Developer to create a new interface that inherited from both the ComponentRegistry and

ManagerRegistry interfaces. An instance of the developer provided interface could then be used to

accept requests via either interface and integrate information regarding all of the registered

components within a single ManagerType struct that is associated with a specific

DeviceManagerComponent.

3.21 LEGACY SUPPORT VIA V222_COMPAT DIRECTIVE

In addition to the optional inheritance pre-compiler directives discussed in section 3.9, SCA 4.0

provides an additional pre-compiler directive that establishes a base for legacy support. This pre-

compiler directive, V222_COMPAT permits developers to enable all the optional inheritances as it

was with previous versions of the SCA. To use the V222_COMPAT one must define this directive

at IDL file compile time. As mentioned previously, this is only a partial solution for full legacy

backward compatibility since SCA 4.0 has reworked the port interfaces.

In addition to the directives and optional inheritance there are other minor interface changes that

distinguish an SCA 4.0 from a 2.2.2 one but COTS development tools should be able easily

accommodate for those differences.

3.22 COMPONENT LIFE CYCLE

3.22.1 Overview

SCA provides support for some Core Framework Control components, notably what occurs when a

DeviceManagerComponent transitions into an out of existence, but there is a lack of concrete

guidance regarding the lifecycle for ComponentBase based components. The life cycles associated

with these components range from characterizing the state transitions that exist for an

ApplicationResourceComponent as a waveform is installed or managed to describing the specifics

of what is required to bring a radio platform into existence.

3.22.2 ComponentBase State Model <Requesting Additional Input>

This instance of the ComponentBase state model semantics (legitimate operations and transitions)

depend on the presence of the LifeCycle interface and support of the CONTROLLABLE flag.

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

73

Figure 54 Component Life Cycle

[Note: Soliciting community for additional content to be added here. Please submit input to jtrs-

sca@spawar.navy.mil.]

3.23 CONFIGURATION PROPERTIES <REQUESTING ADDITIONAL

INPUT>

[Note: Soliciting community for additional content to be added here. Please submit input to jtrs-

sca@spawar.navy.mil.]

3.24 BYPASS

3.24.1 Overview

SCA 4.0 does not explicitly address security concerns although many developers will use SCA to

build security aware devices. Ideally architectural decisions should be made which will minimize

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

74

or eliminate the need for bypassing security controls or devices. However, that approach may not

be practical or realizable.

The SCA design team felt that the concept of bypass was important enough that although it was

beyond the scope of the specification that it warranted a collection of common definitions so that it

could be discussed and utilized consistently across SCA implementations. The definitions do not

presuppose whether or not bypass is positive, negative, necessary or unnecessary, they simply

establish a common vocabulary for the topic.

3.24.2 Definitions

Security Domain – A set of objects sharing common Information Assurance properties such as

security classification level or integrity.

Bypass – An information flow even that transports information without introducing an additional

level of encryption or decryption from one security domain to a security domain with incompatible

security properties.

Bypass Policy – Establishes the rules that govern the format and pace of data that is allowed to

cross between security domains unaltered.

Bypass Guard – A system entity that enforces a bypass policy.

In Band Bypass – Bypass which conforms with a corresponding bypass policy of a portion

(typically unencrypted) of an actual data payload (i.e. waveform user traffic)

Out of Band Bypass – Bypass which conforms with a corresponding bypass policy of a completely

unencrypted non-waveform user traffic data payload (see Figure 55).

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

75

Figure 55 Illustration of Bypass Concepts

Out of

Band

Bypass

Guard

Crypto

Device

Policy

Store Security

Domain 2

Security

Domain 1

In Band

Bypass

Guard

In Band Data Waveform

Header

Out of Band

Data

Control

Status

Data

Waveform

Data

Waveform

Header and

Encrypted Data

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

76

4 ACRONYMS

Abbreviation Definition

AEP Application Environment Profile

API Application Program Interface

CF Core Framework

CORBA Common Object Request Broker Architecture

CORBA/e Embedded Real Time CORBA

COTS Commercial Off The Shelf

CPFSK Continuous Phase Frequency Shift Keying

CVSD Continuously Variable-Slope Delta modulation

DCD Device Configuration Descriptor

DLC Data Link Control

DSP Digital Signal Processor

DTD Document Type Definition

FM3TR Future Multiband Multiwaveform Modular Tactical Radio

FPGA Field Programmable Gate Array

GPP General Purpose Processor

GPS Global Positioning System

ICWG Interface Control Working Group

ID Identifier

IDL Interface Definition Language

IEEE Institute of Electrical and Electronic Engineers

JPA JTRS Platform Adapter

JTNC Joint Tactical Networking Center

JTR Joint Tactical Radio

JTRS Joint Tactical Radio System

LwAEP Lightweight Application Environment Profile

MAC Media Access Control

MILCOM Military Communications Conference

MIPS Million Instructions Per Second

MHAL Modem Hardware Abstraction Layer

SCA Specification 4.0 User‘s Guide Version: 1.0

07 November 2012

77

Abbreviation Definition

MOCB MHAL On Chip Bus

OE Operating Environment

OMG Object Management Group

ORB Object Request Broker

PIM Platform Independent Model

POSIX


 Portable Operating System Interface

PSM Platform Specific Model

RPC Remote Procedure Control

R-S Reed Solomon

SAD Software Assembly Descriptor

SCA Software Communications Architecture

SCD Software Component Descriptor

SDR Software Defined Radio

SPD Software Profile Descriptor

TCP-IP Transmission Control Protocol (TCP) and Internet Protocol (IP)

TD Technical Director

TDMA Time Division Multiplexed Access

UI User Interface

UML Unified Modeling Language

UOF Unit of Functionality

WF Waveform

XML eXtensible Markup Language



 POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

